
Transaction Interface (TRI) Specification

Transaction Interface (TRI)

Specification
Version 0.9a Edition 8

Updated 2008-10-31
Distributed with Package strss7-0.9a.8

Copyright c© 2008 OpenSS7 Corporation
All Rights Reserved.

Abstract

This document is a Specification containing technical details concerning the
implementation of the Transaction Interface (TRI) for OpenSS7. It contains
recommendations on software architecture as well as platform and system ap-
plicability of the Transaction Interface (TRI). It provides abstraction of the
transaction interface to these components as well as providing a basis for trans-
action control for other transaction protocols.

Brian Bidulock <bidulock@openss7.org> for

The OpenSS7 Project <http://www.openss7.org/>

mailto:bidulock@openss7.org
http://www.openss7.org/

Copyright c© 2001-2008 OpenSS7 Corporation
Copyright c© 1997-2000 Brian F. G. Bidulock
All Rights Reserved.

Published by:

OpenSS7 Corporation
1469 Jefferys Crescent
Edmonton, Alberta T6L 6T1
Canada

Unauthorized distribution or duplication is prohibited.

Permission to use, copy and distribute this documentation without modification, for any
purpose and without fee or royalty is hereby granted, provided that both the above copy-
right notice and this permission notice appears in all copies and that the name of OpenSS7
Corporation not be used in advertising or publicity pertaining to distribution of this docu-
mentation or its contents without specific, written prior permission. OpenSS7 Corporation
makes no representation about the suitability of this documentation for any purpose. It is
provided “as is” without express or implied warranty.

Notice:

OpenSS7 Corporation disclaims all warranties with regard to this documentation including
all implied warranties of merchantability, fitness for a particular purpose, non-infringement,
or title; that the contents of the document are suitable for any purpose, or that the im-
plementation of such contents will not infringe on any third party patents, copyrights,
trademarks or other rights. In no event shall OpenSS7 Corporation be liable for any di-
rect, indirect, special or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with any use of this document or the performance
or implementation of the contents thereof.

OpenSS7 Corporation reserves the right to revise this software and documentation for any
reason, including but not limited to, conformity with standards promulgated by various
agencies, utilization of advances in the state of the technical arts, or the reflection of changes
in the design of any techniques, or procedures embodied, described, or referred to herein.
OpenSS7 Corporation is under no obligation to provide any feature listed herein.

http://www.openss7.com/
mailto:bidulock@openss7.org
http://www.openss7.com/

i

Short Contents

Preface . 3

1 Introduction . 5

2 The Transaction Sub-Layer . 7

3 TRI Services Definition . 11

4 TRI Primitives . 21

5 Diagnostics Requirements . 73

6 Transaction Service Interface Sequence of Primitives 75

Addendum for ITU-T Conformance . 79

Addendum for ANSI Conformance . 85

Addendum for ETSI Conformance . 91

A Mapping TRI Primitives . 93

B State/Event Tables . 99

C Primitive Precedence Tables . 101

D TRI Header File Listing . 103

License . 111

Glossary . 119

Acronyms . 121

References . 123

Index . 125

iii

Table of Contents

Preface . 3
Security Warning . 3
Abstract . 3
Purpose . 3
Intent . 4
Audience . 4
Disclaimer . 4
Revision History . 4

1 Introduction . 5
1.1 Related Documentation . 5

1.1.1 Role . 5
1.2 Definitions, Acronyms, and Abbreviations . 5

2 The Transaction Sub-Layer . 7
2.1 Model of the TRI . 7
2.2 TRI Services . 8

2.2.1 COTS . 8
2.2.2 CLTS . 8
2.2.3 Local Management . 9

3 TRI Services Definition . 11
3.1 Local Management Services Definition . 11

3.1.1 Transaction Information Reporting Service 11
3.1.2 TR User Bind Service . 11
3.1.3 TR User Unbind Service . 12
3.1.4 Receipt Acknowledgement Service . 12
3.1.5 Options Mangement Service . 12
3.1.6 Error Acknowledgement Service . 13

3.2 Connection-Oriented Mode Services Definition 13
3.2.1 Transaction Initiation Phase . 14

3.2.1.1 User Primitives Successful Transaction Establishment
. 15

3.2.1.2 Provider Primitives Successful Transaction
Establishment . 15

3.2.2 Transaction Data Transfer Phase . 16
3.2.2.1 Primitives for Data Transfer . 16

3.2.3 Transaction Termination Phase . 16
3.2.3.1 Primitives for Transaction Termination 16

3.3 Connectionless Mode Services Definition . 18
3.3.1 Request and Response Primitives . 19

iv Transaction Interface (TRI)

4 TRI Primitives . 21
4.1 Management Primitives . 22

4.1.1 Transaction Information . 22
4.1.1.1 Transaction Information Request . 22
4.1.1.2 Transaction Information Acknowledgement 24

4.1.2 Transaction Protocol Address Management 26
4.1.2.1 Transaction Bind Request . 26
4.1.2.2 Transaction Bind Acknowledgement 29
4.1.2.3 Transaction Unbind Request . 31
4.1.2.4 Transaction Protocol Address Request 32
4.1.2.5 Transaction Protocol Address Acknowledgement 34

4.1.3 Transaction Options Management . 36
4.1.3.1 Transaction Options Management Request 36
4.1.3.2 Transaction Options Management Acknowledgement

. 38
4.1.4 Transaction Error Management . 41

4.1.4.1 Transaction Successful Receipt Acknowledgement 41
4.1.4.2 Transaction Error Acknowledgement 42

4.2 Connection-Oriented Mode Primitives . 45
4.2.1 Transaction Establishment . 45

4.2.1.1 Transaction Begin Request . 45
4.2.1.2 Transaction Begin Indication . 48
4.2.1.3 Transaction Begin Response . 50
4.2.1.4 Transaction Begin Confirmation . 53

4.2.2 Transaction Data Transfer . 55
4.2.2.1 Transaction Continue Request . 55
4.2.2.2 Transaction Continue Indication . 58

4.2.3 Transaction Termination . 60
4.2.3.1 Transaction End Request . 60
4.2.3.2 Transaction End Indication . 62
4.2.3.3 Transaction User Abort Request . 64
4.2.3.4 Transaction Abort Indication . 66

4.3 Connectionless Mode Primitives . 68
4.3.1 Transaction Phase . 68

4.3.1.1 Transaction Unidirectional Request 68
4.3.1.2 Transaction Unidirectional Indication 70
4.3.1.3 Transaction Notice Indication . 72

5 Diagnostics Requirements . 73
5.1 Non-Fatal Errors . 73
5.2 Fatal Errors . 73

v

6 Transaction Service Interface Sequence of
Primitives . 75

6.1 Rules for State Maintenance . 75
6.1.1 General Rules for State Maintenace . 75
6.1.2 Connection-Oriented Transaction Service Rules for State

Maintenace . 75
6.2 Rules for Precedence of Primitives on a Stream 76

6.2.1 General Rules for Precedence of Primitives 76
6.2.2 Connection-Oriented Transaction Service Rules for

Precedence of Primitives . 76
6.3 Rules for Flushing Queues . 76

6.3.1 General Rules for Flushing Queues . 76
6.3.2 Connection-Oriented Transaction Service Rules for Flushing

Queues . 77

Addendum for ITU-T Conformance 79
Quality of Service: Model and Description . 79

QoS Overview . 79
TRI Primitives: Rules for ITU-T Q.771 Conformance 79

Addressing . 79
Address Format . 79

Options . 79
TCAP Level Options . 79
SCCP Level Options . 79

Supported Services . 80
Common Transaction Services . 80

Information Service . 80
Address service . 82
Bind Service . 83
Options Management Service . 83

Connection-Oriented Transaction Services . 83
Transaction Begin . 83
Transaction Continue . 83
Transaction End . 83

Connectionless Transaction Services . 83

Addendum for ANSI Conformance 85
Quality of Service: Model and Description . 85

QoS Overview . 85
TRI Primitives: Rules for ANSI T1.114 Conformance 85

Addressing . 85
Address Format . 85

Options . 85
TCAP Level Options . 85
SCCP Level Options . 85

Supported Services . 87
Common Transaction Services . 87

vi Transaction Interface (TRI)

Information Service . 87
Address service . 89
Bind Service . 89
Options Management Service . 89

Connection-Oriented Transaction Services . 89
Transaction Begin . 89
Transaction Continue . 89
Transaction End . 89

Connectionless Transaction Services . 89

Addendum for ETSI Conformance 91
ETSI Quality of Service Model and Description . 91

QoS Overview . 91
TRI Primitives: Rules for ETSI ETS 300 287 Conformance 91

Addressing . 91
Address Format . 91

Options . 91
TCAP Level Options . 91
SCCP Level Options . 91

ETSI Supported Services . 91
Common Transaction Services . 91

Information service . 91
Address service . 91
Bind Service . 91
Options Management Service . 91

Connection-Oriented Transaction Services . 92
Transaction Begin . 92
Transaction Continue . 92
Transaction End . 92

Connectionless Transaction Services . 92

Appendix A Mapping TRI Primitives 93
A.1 Mapping TRI Primitives to ITU-T Q.771 . 94
A.2 Mapping TRI Primitives to ANSI T1.114 . 95
A.3 Mapping TRI Primitives to ITU-T X.219 . 96

A.3.1 State Mapping . 96
A.3.2 Primitive Mapping . 96

A.3.2.1 A-ASSOCIATE . 96
A.3.2.2 A-RELEASE . 96
A.3.2.3 A-ABORT . 96
A.3.2.4 A-P-ABORT . 96
A.3.2.5 A-UNIT-DATA . 96

A.3.3 Parameter Mapping . 96

Appendix B State/Event Tables 99

Appendix C Primitive Precedence Tables . . . 101

vii

Appendix D TRI Header File Listing 103

License . 111
GNU Free Documentation License . 111

Preamble . 111
Terms and Conditions for Copying, Distribution and Modification

. 111
How to use this License for your documents . 117

Glossary . 119

Acronyms . 121

References . 123

Index . 125

Transaction Interface (TRI) Table of Contents

List of Figures
Figure 2.1: Model of the TRI . 7
Figure 3.1: Sequence of Primitives – Transaction Information Reporting Service 11
Figure 3.2: Sequence of Primitives – TR User Bind Service . 12
Figure 3.3: Sequence of Primitives – TR User Unbind Receipt Acknowledgement

Services . 12
Figure 3.4: Sequence of Primitives – Options Management Service 13
Figure 3.5: Sequence of Primitives – Error Acknowledgement Service 13
Figure 3.6: Sequence of Primitives – Successful Transaction Initiation 15
Figure 3.7: Sequence of Primitives – Transaction Response Token Value Determination

. 15
Figure 3.8: Sequence of Primitives – Data Transfer . 16
Figure 3.9: Sequence of Primitives – TR User Invoked Termination 17
Figure 3.10: Sequence of Primitives – Simultaneous TR User Invoked Termination . . 17
Figure 3.11: Sequence of Primitives – TR Provider Invoked Termination 17
Figure 3.12: Sequence of Primitives – Simultaneous TR User and Provider Invoked

Termination . 18
Figure 3.13: Sequence of Primitives – TR User Rejection of a Transaction Initiation

Attempt . 18
Figure 3.14: Sequence of Primitives – TR Provider Rejection of a Transaction

Initiation Attempt . 18
Figure 3.15: Sequence of Primitives – Connectionless Mode Data Transfer 19
Figure 3.16: Sequence of Primitives – CLTS Error Indication Service 19

2008-10-31 1

List of Tables

2 Version 0.9a Rel. 8

Transaction Interface (TRI) Preface

Preface

Security Warning

Permission to use, copy and distribute this documentation without modification, for any
purpose and without fee or royalty is hereby granted, provided that both the above copy-
right notice and this permission notice appears in all copies and that the name of OpenSS7
Corporation not be used in advertising or publicity pertaining to distribution of this docu-
mentation or its contents without specific, written prior permission. OpenSS7 Corporation
makes no representation about the suitability of this documentation for any purpose. It is
provided “as is” without express or implied warranty.

OpenSS7 Corporation disclaims all warranties with regard to this documentation including
all implied warranties of merchantability, fitness for a particular purpose, non-infringement,
or title; that the contents of the document are suitable for any purpose, or that the im-
plementation of such contents will not infringe on any third party patents, copyrights,
trademarks or other rights. In no event shall OpenSS7 Corporation be liable for any di-
rect, indirect, special or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with any use of this document or the performance or
implementation of the contents thereof.

OpenSS7 Corporation is making this documentation available as a reference point for the
industry. While OpenSS7 Corporation believes that these interfaces are well defined in this
release of the document, minor changes may be made prior to products conforming to the
interfaces being made available.

Abstract

This document is a Specification containing technical details concerning the implementation
of the Transaction Interface (TRI) for OpenSS7. It contains recommendations on software
architecture as well as platform and system applicability of the Transaction Interface (TRI).

This document specifies a Transaction Interface (TRI) Specification in support of the
OpenSS7 Transaction Capablities Application Part (TCAP) protocol stacks. It provides
abstraction of the transaction interface to these components as well as providing a basis for
transaction control for other transaction control protocols.

Purpose

The purpose of this document is to provide technical documentation of the Transaction
Interface (TRI). This document is intended to be included with the OpenSS7 STREAMS
software package released by OpenSS7 Corporation. It is intended to assist software de-
velopers, maintainers and users of the Transaction Interface (TRI) with understanding the
software architecture and technical interfaces that are made available in the software pack-
age.

2008-10-31 3

http://www.openss7.com/
http://www.openss7.com/

Preface

Intent

It is the intent of this document that it act as the primary source of information concerning
the Transaction Interface (TRI). This document is intended to provide information for
writers of OpenSS7 Transaction Interface (TRI) applications as well as writers of OpenSS7
Transaction Interface (TRI) Users.

Audience

The audience for this document is software developers, maintainers and users and integrators
of the Transaction Interface (TRI). The target audience is developers and users of the
OpenSS7 SS7 stack.

Disclaimer

Although the author has attempted to ensure that the information in this document is com-
plete and correct, neither the Author nor OpenSS7 Corporation will take any responsibility
in it.

Revision History

Take care that you are working with a current version of this documentation: you will not
be notified of updates. To ensure that you are working with a current version, check the
OpenSS7 Project website for a current version.
Only the texinfo or roff source is controlled. A printed (or postscript) version of this
document is an UNCONTROLLED VERSION.

tri.texi,v

Revision 0.9.2.20 2008-09-20 11:04:33 brian

- added package patchlevel

Revision 0.9.2.19 2008-08-03 06:03:33 brian

- protected agains texinfo commands in log entries

Revision 0.9.2.18 2008-08-03 05:05:18 brian

- conditional @syncodeindex frags out automake, fails distcheck

Revision 0.9.2.17 2008-07-11 09:36:14 brian

- updated documentation

Revision 0.9.2.16 2008-04-29 07:10:40 brian

- updating headers for release

Revision 0.9.2.15 2007/08/03 13:34:59 brian

- manual updates, put ss7 modules in public release

4 Version 0.9a Rel. 8

http://www.openss7.org/

Transaction Interface (TRI) Introduction

1 Introduction

This document specifies a STREAMS-based kernel-level instantiation of the ITU-T Transac-
tion Capabilities Application Part (TCAP) Transaction (TR) Sub-Layer. The Transaction
Interface (TRI) enables the user of a transaction sub-layer service to access and use any of a
variety of conforming transaction providers without specific knowledge of the provider’s pro-
tocol. The service interface is designed to support any transaction protocol. This interface
only specifies access to transaction sub-layer services providers, and does not address is-
sues concerning transaction sub-layer management, protocol performance, and performance
analysis tools.
The specification assumes that the reader is familiar with the ISO reference model termi-
nology, ISO/ITU-T transaction service definitions (ROSE, ACSE, TCAP), and STREAMS.

1.1 Related Documentation

— ITU-T Recommendation X.200 (White Book) — ISO/IEC 7498-1:1994
— ITU-T Recommendation X.219 (White Book) — ISO/IEC
— ITU-T Recommendation X.229 (White Book) — ISO/IEC
— ITU-T Recommendation X.217 (White Book) — ISO/IEC 8649 : 1996
— ITU-T Recommendation X.227 (White Book) — ISO/IEC 8650-1 : 1995
— ITU-T Recommendation X.237 (White Book) — ISO/IEC 10035-1 : 1995
— ITU-T Recommendation Q.771 (White Book)
— System V Interface Definition, Issue 2 - Volume 3

1.1.1 Role

This document specifies an interface that supports the service provided by the Association
Control Service Element (ACSE) for Open Systems Interconnect for ITU-T Applications
as specified in ITU-T Recommendation X.217 (ISO/IEC 8649). It is also intended to sup-
port the Transaction Sub-layer provided by the Transaction Capabilities Application Part
(TCAP) for Signalling System Number 7 (SS7) as specified in ITU-T Recommendation
Q.771. These specifications are targeted for use by developers and testers of protocol mod-
ules that require transaction sub-layer service.1

1.2 Definitions, Acronyms, and Abbreviations

Originating TR User
A TR-User that initiates a transaction.

Destination TR User
A TR-User with whom an originating TR user wishes to establish a transaction.

ISO International Organization for Standardization

1 For an alternative interface, see Section “Introduction” in Transaction Component Interface, or Section
“Introduction” in Using XTI for TCAP.

2008-10-31 5

Chapter 1: Introduction

TR User Kernel level protocol or user level application that is accessing the services of
the transaction sub-layer.

TR Provider
Transaction sub-layer entity/entities that provide/s the services of the transac-
tion interface.

TRI Transaction Interface

TIDU Transaction Interface Data Unit

TSDU Transaction Service Data Unit

OSI Open Systems Interconnection

QOS Quality of Service

STREAMS
A communication services development facility first available with UNIX Sys-
tem V Release 3

6 Version 0.9a Rel. 8

Transaction Interface (TRI) The Transaction Sub-Layer

2 The Transaction Sub-Layer

The Transaction Sub-Layer provides the means to manage the association of TR-User into
transactions. It is responsible for the routing and management of transaction associations
between TR-user entities.

2.1 Model of the TRI

The TRI defines the services provided by the transaction sub-layer to the transaction-user
at the boundary between the Transaction Component (TC) Sub-Layer and the Transaction
(TR) Sub-Layer in the model presented in ITU-T Recommendation Q.771. The interface
consists of a set of primitives defined as STREAMS messages that provide access to the
transaction sub-layer services, and are transferred between the TR user entity and the TR
provider. These primitives are of two types: ones that originate from the TR user, and
others that originate from the TR provider, or respond to an event of the TR provider. The
primitives that originate from the TR provider are either confirmations of a request or are
indications to the NS user that the event has occurred. Figure 2.1 shows the model of the
TRI.� �

TR User

TR Provider

TRI

Indication/Confirmation
Primitives

Request/Response
Primitives

Full Duplex Connection

Figure 2.1: Model of the TRI
 	
The TRI allows the TR provider to be configured with any transaction sub-layer user
(such as the Transaction Component (TC) Sub-Layer) that also conforms to the TRI. A
transaction sub-layer user can also be a user program that conforms to the TRI and accesses
the TR provider via putmsg(2s) and getmsg(2s) system calls.

STREAMS messages that are used to communicate transaction service primitives between
the transaction user and the transaction provider may have one of the following formats:

1. A M_PROTO message block followed by zero or more M_DATA message blocks. The M_
PROTO message block contains the type of service primitive and all relevant arguments
associated with the primitive. The M_DATA blocks contain user data associated with
the service primitive.

2008-10-31 7

http://www.openss7.org/man2html?putmsg(2s)
http://www.openss7.org/man2html?getmsg(2s)

Chapter 2: The Transaction Sub-Layer

2. One M_PCPROTO message block containing the type of service primitive and all the
relevant arguments associated with the primitive.

3. One or more M_DATA message blocks containing user data.

The following sections describe the service primitives which define both connection-mode
and connectionless-mode service.
For both types of service, two types of primitives exist: primitives that originate from the
service user and primitives that originate from the service provider. The primitives that
originate from the service user make requests to the service provider or response to an event
of the service provider. The primitive that originate from the service provider are either
confirmations of a request or are indications to the service user that an event has occurred.
The primitive types along with the mapping of those primitives to the STREAMS message
types and the service primitives of the ISO/IEC xxxxx and service definitions are listed in
Chapter 4 [TRI Primitives], page 21. The format of these primitives and the rules governing
the use of them are described in Section 4.1 [Management Primitives], page 22, Section 4.2
[Connection-Oriented Mode Primitives], page 45, and Section 4.3 [Connectionless Mode
Primitives], page 68.

2.2 TRI Services

The features of the TRI are defined in terms of the services provided by the service
provider, and the individual primitives that may flow between the service user and the
service provider.
The services supported by the TRI are based on two distinct modes of communication,
connection-mode transaction service (COTS) and connectionless transaction service
(CLTS). Also, the TRI supports services for local management.

2.2.1 COTS

The main features of the connection mode communication are:
a. It is virtual circuit oriented;
b. it provides transfer of data via a pre-established path; and,
c. it provides reliable data transfer.1

There are three phases to each instance of communication: Transaction Establishment,
Data Transfer, and Transaction Release. Units of data arrive at the destination in the same
order as they departed their source and the data is protected against duplication or loss of
data units within some specified quality of service.

2.2.2 CLTS

The main features of the connectionless mode communication are:
a. It is datagram oriented;
b. it provides transfer of data in self contained units;

1 That is, it supports TCAP

operation classes 1, 2, and 3; ROSE operation classes 1, 2, 3 and 4.

8 Version 0.9a Rel. 8

Transaction Interface (TRI) The Transaction Sub-Layer

c. there is no logical relationship between these units of data; and,
d. it is unreliable.

Connectionless mode communication has no separate phases. Each unit of data is transmit-
ted from source to destination independently, appropriate addressing information is included
with each unit of data. As the units of data are transmitted independently from source to
destination, there are, in general, no guarantees of proper sequence and completeness of the
data stream.

2.2.3 Local Management

The TRI specifications also define a set of local management functions that apply to both
COTS and CLTS modes of communication. These services have local significance only.
Table 1 and Table 2 summarizes the TRI service primitives by their state and service.

STATE SERVICE PRIMITIVES

Local Management Information
Reporting

TR_INFO_REQ, TR_INFO_ACK,
TR_ERROR_ACK

Bind TR_BIND_REQ, TR_BIND_ACK,
TR_UNBIND_ACK, TR_OK_ACK,
TR_ERROR_ACK

Options Management TR_OPTMGMT_REQ, TR_OK_ACK,
TR_ERROR_ACK

Transaction
Establishment

Transaction Begin TR_BEGIN_REQ, TR_BEGIN_IND,
TR_BEGIN_RES, TR_BEGIN_CON,
TR_TOKEN_REQ, TR_TOKEN_ACK,
TR_OK_ACK, TR_ERROR_ACK

Transaction Data
Transfer

Transaction Continue TR_CONT_REQ, TR_CONT_IND

Transaction Release Transaction End TR_END_REQ, TR_END_IND

Transaction Abort TR_ABORT_REQ, TR_ABORT_IND

Table 1. Service Primitives for Connection Mode Transaction
STATE SERVICE PRIMITIVES

Local Management Information
Reporting

TR_INFO_REQ, TR_INFO_ACK,
TR_ERROR_ACK

Bind TR_BIND_REQ, TR_BIND_ACK,
TR_UNBIND_ACK, TR_OK_ACK,
TR_ERROR_ACK

Options Management TR_OPTMGMT_REQ, TR_OK_ACK,
TR_ERROR_ACK

Transaction Unitdata Transaction
Unidirectional

TR_UNI_REQ, TR_UNI_IND,
TR_NOTICE_IND

Table 2. Service Primitives for Connectionless Mode Transaction

2008-10-31 9

Transaction Interface (TRI) TRI Services Definition

3 TRI Services Definition

This section describes the services of the TRI primitives. Time-sequence diagrams1 that
illustrate the sequence of primitives are used. The format of the primitives will be defined
later in this document.

3.1 Local Management Services Definition

The services defined in this section are outside the scope of the international standards.
These services apply to both connection-mode as well as connectionless modes of commu-
nication. They are involved for the initialization/de-initialization of a stream connected to
the TR provider. They are also used to manage options supported by the TR provider and
to report information on the supported parameter values.

3.1.1 Transaction Information Reporting Service

This service provides information on the options supported by the TR provider.
• TR_INFO_REQ: This primitive request that the TR provider returns the values of all the

supported protocol parameters. This request may be invoked during any phase.
• TR_INFO_ACK: This primitive is in response to the TR INFO REQ primitive and re-

turns the values of the supported protocol parameters to the TR user.

The sequence of primitives for transaction information management is shown in Figure 3.1.� �
TR_INFO_REQ

TR_INFO_ACK

Figure 3.1: Sequence of Primitives – Transaction Information Reporting Service
 	
3.1.2 TR User Bind Service

This service allows an originating address to be associated with a stream. It allows the TR
user to negotiate the number of transaction begin indications that can remain unacknowl-
edged for that TR user (a transaction begin indication is considered unacknowledged while
it is awaiting a corresponding transaction response or abort request from the TR user).
This service also defines a mechanism that allows a stream (bound to the address of the
TR user) to be reserved to handle incoming transactions only. This stream is referred to as
the listener stream.
• TR_BIND_REQ: This primitive request that the TR user be bound to a particular origi-

nating address, and negotiate the number of allowable outstanding transaction indica-
tions for that address.

1 Conventions for the time-sequence diagrams are defined in ITU-T X.210, ISO/IEC 10731:1994.

2008-10-31 11

Chapter 3: TRI Services Definition

• TR_BIND_ACK: This primitive is in response to the TR_BIND_REQ primitive and indicates
to the user that the specified TR user has been bound to a protocol address.

The sequence of primitives for the TR user bind service is shown in Figure 3.2.� �
TR_BIND_REQ

TR_BIND_ACK

Figure 3.2: Sequence of Primitives – TR User Bind Service
 	
3.1.3 TR User Unbind Service

This service allows the TR user to be unbound from a protocol address.
• TR_UNBIND_REQ: This primitive requests that the TR user be unbound from the pro-

tocol address it had previously been bound to.

The sequence of primitives for the TR user unbind service is shown in Figure 3.3.� �
TR_UNBIND_REQ

TR_OK_ACK

Figure 3.3: Sequence of Primitives – TR User Unbind Receipt Acknowledgement Services
 	
3.1.4 Receipt Acknowledgement Service

• TR_OK_ACK: This primitive indicates to the TR user that the previous TR user origi-
nated primitive was received successfully by the TR provider.

An example showing the sequence of primitives for successful receive acknowledgement is
depicted in Figure 3.3.

3.1.5 Options Mangement Service

This service allows the TR user to manage the QOS parameter values associated with the
TR provider.
• TR_OPTMGMT_REQ: This primitive allows the TR user to select default values for QOS

parameters within the range supported by the TR provider, and to indicate the default
selection of return option.

Figure 3.4 shows the sequence of primitives for transaction options management.

12 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Services Definition� �
TR_OPTMGMT_REQ

TR_OK_ACK

Figure 3.4: Sequence of Primitives – Options Management Service
 	
3.1.6 Error Acknowledgement Service

• TR_ERROR_ACK: This primitive indicates to the TR user that a non-fatal error has oc-
curred in the last TR user originated request or response primitive (listed in Figure 3.5)
on the stream.

Figure 3.5 shows the sequence of primitives for the error management primitive.� �
REQ/RES Primitive *

TR_ERROR_ACK

* = TR_BIND_REQ
TR_UNBIND_REQ
TR_OPTMGMT_REQ
TR_BEGIN_REQ
TR_BEGIN_RES
TR_END_REQ
TR_ABORT_REQ

Figure 3.5: Sequence of Primitives – Error Acknowledgement Service
 	
3.2 Connection-Oriented Mode Services Definition

This section describes the required transaction service primitives that define the connection
mode interface.

The queue model for connection-oriented services are discussed in more detail in ITU-T
X.217 and ITU-T Q.771.

The queue model represents the operation of a transaction association in the abstract by a
pair of queues linking two transaction users. There is one queue for each direction of data
flow. Each queue represents a flow control function in one direction of transfer. The ability
of a user to add objects to a queue will be determined by the behaviour of the user removing
objects from that queue, and the state of the queue. The pair of queues is considered to be
available for each potential transaction association. Objects that are entered or removed
from the queue are either as a result of interactions at the two transaction addresses, or as
the result of TR provider initiatives.

• A queue is empty until a transaction object has been entered and can be returned to
this state, with loss of its contents, by the TR provider.

• Objects may be entered into a queue as a result of the actions of the source TR user,
subject to control by the TR provider.

• Objects may also be entered into a queue by the TR provider.

2008-10-31 13

Chapter 3: TRI Services Definition

• Objects are removed from the queue under the control of the TR user in the same order
as they were entered except:

1. If the object is of type defined to be able to advance ahead of the preceding object
(however, no object is defined to be able to advance ahead of another object of the
same type), or

2. If the following object is defined to be destructive with respect to the preceding
object on the queue. If necessary, the last object on the queue will be deleted to
allow a destructive object to be entered - they will therefore always be added to
the queue. For example, “abort” objects are defined to be destructive with respect
to all other objects.

Table 3 shows the ordering relationships among the queue model objects.
Object X BEGIN CONT END ABORT
Object Y

BEGIN N/A − − DES

CONT N/A − − DES

END N/A N/A − −

AA Indicates that Object X is defined to be able to advance ahead of pre-
ceding Object Y.

DES Indicates that Object X is defined to be destructive with respect to the
preceding Object Y.

− Indicates that Object X is neither destructive with respect to Object Y,
nor able to advance ahead of Object Y.

N/A Indicates that Object X will not occur in a position succeeding Object
Y in a valid state of a queue.

Table 3. Ordering Relationships Between Queue Model Objects

3.2.1 Transaction Initiation Phase

A pair of queues is associated with a transaction association between two transaction users
when the TR provider receives a TR_BEGIN_REQ primitive at one of the TR users resulting
in a begin object being entered into the queue. The queues will remain associated with
the transaction until a TR_END_REQ or TR_ABORT_REQ primitive (resulting in an end or
abort object) is either entered or removed from a queue. Similarly, in the queue from the
destination TR user, objects can be entered into the queue only after the begin object
associated with the TR_BEGIN_RES has been entered into the queue. Alternatively, the
destination TR user can enter an end or abort object into the queue instead of the begin
object to terminate the transaction.

The transaction establishment procedure will fail if the TR provider is unable to establish
a transaction association, or if the destination TR user is unable to accept the TR_BEGIN_
IND (see Transaction Termination primitive definition in Section 4.2.3.2 [Transaction End
Indication], page 62).

14 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Services Definition

3.2.1.1 User Primitives Successful Transaction Establishment

The following user primitives support COTS Phase I (Transaction Establishment) services:

• TR_BEGIN_REQ: This primitive requests that the TR provider form a transaction asso-
ciation with the specified destination TR user.

• TR_BEGIN_RES: This primitive requests that the TR provider accept a previous trans-
action indication.

3.2.1.2 Provider Primitives Successful Transaction Establishment

The following provider primitives support COTS Phase I (Transaction Establishment) ser-
vices:

• TR_BEGIN_IND: This primitive indicates to the TR user that a transaction association
request has been made by a user at the specified source address.

• TR_BEGIN_CON: This primitive indicates to the TR user that a transaction initiation
request has been confirmed on the specified responding address.

The sequence of primitives in a successful transaction initiation is defined by the time
sequence diagrams as shown in Figure 3.6.� �

TR_BEGIN_REQ

TR_BEGIN_IND

TR_OK_ACKTR_BEGIN_CON

TR_BEGIN_RES

Figure 3.6: Sequence of Primitives – Successful Transaction Initiation
 	
The sequence of primitives for the transaction initiation response token value determination
is shown in Figure 3.7 (procedures for transaction initiation response token value determina-
tion are discussed in Section 4.1.2.1 [Transaction Bind Request], page 26, and Section 4.1.2.2
[Transaction Bind Acknowledgement], page 29).� �

(with TOKEN_REQUEST set)

(with TOKEN_value)

TR_BIND_REQ

TR_BIND_ACK

Figure 3.7: Sequence of Primitives – Transaction Response Token Value Determination
 	
2008-10-31 15

Chapter 3: TRI Services Definition

3.2.2 Transaction Data Transfer Phase

Flow control on the transaction association is done by management of the queue capacity,
and by allowing objects of certain types to be inserted to the queues, as shown in Table 4.

3.2.2.1 Primitives for Data Transfer

The following primitives support COTS Phase II (Transaction Data Transfer) services:

• TR_CONT_REQ: This primitive requests that the TR provider transfer the specified user
data.

• TR_CONT_IND: This primitive indicates to the TR user that this message contains user
data.

Figure 3.8 shows the sequence of primitives for successful user data transfer. The sequence
of primitives may remain incomplete if a TR_END_REQ, TR_END_IND, TR_ABORT_REQ, or TR_
ABORT_IND primitive occurs.� �

TR_CONT_REQ

TR_CONT_IND

Figure 3.8: Sequence of Primitives – Data Transfer
 	
3.2.3 Transaction Termination Phase

The transaction association procedure is initialized by insertion of an end or abort object
(associated with a TR_END_REQ or TR_ABORT_REQ) into the queue. As shown in Table?,
the termination procedure is destructive with respect to other objects in the queue, and
eventually results in the emptying of queues and termination of the transaction association.

The sequence of primitives depends on the origin of the termination action. The sequence
may be:

1. invoked by on TR user, with a request from that TR user leading to an indication to
the other;

2. invoked by both TR users, with a request from each of the TR users;

3. invoked by the TR provider, with an indication to each of the TR users;

4. invoked independently by one TR user and the TR provider, with a request from the
originating TR user and an indication to the other.

3.2.3.1 Primitives for Transaction Termination

The following primitives support CONS Phase III (Transaction Termination) services:

• TR_END_REQ: This primitive requests that the TR provider deny an outstanding request
for a transaction association or normal termination of an existing transaction.

16 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Services Definition

• TR_ABORT_REQ: This primitive requests that the TR provider deny an outstanding
request for a transaction association or abnormal termination of an existing transaction.

• TR_END_IND: This primitive indicates to the TR user that either a request for transac-
tion initiation has been denied or an existing transaction has been terminated normally.

• TR_ABORT_IND: This primitive indicates to the TR user that either a request for trans-
action initiation has been denied or an existing transaction has been terminated ab-
normally.

The sequence of primitives are shown in the time sequence diagrams in the figures that
follow:� �

TR_ABORT_REQ

TR_OK_ACK

TR_ABORT_IND

Figure 3.9: Sequence of Primitives – TR User Invoked Termination
 	� �
TR_ABORT_REQ TR_ABORT_REQ

TR_OK_ACKTR_OK_ACK

Figure 3.10: Sequence of Primitives – Simultaneous TR User Invoked Termination
 	� �

TR_ABORT_IND TR_ABORT_IND

Figure 3.11: Sequence of Primitives – TR Provider Invoked Termination
 	
2008-10-31 17

Chapter 3: TRI Services Definition� �
TR_ABORT_REQ

TR_OK_ACK TR_ABORT_IND

Figure 3.12: Sequence of Primitives – Simultaneous TR User and Provider Invoked Termi-
nation
 	

A TR user may reject a transaction initiation attempt by issuing a TR_ABORT_REQ. The
originator parameter in the TR_ABORT_REQ will indicate TR user invoked termination. The
sequence of primitives is shown in Figure 3.13.� �

TR_BEGIN_REQ

TR_BEGIN_IND

TR_OK_ACKTR_ABORT_IND

TR_ABORT_REQ

Figure 3.13: Sequence of Primitives – TR User Rejection of a Transaction Initiation At-
tempt
 	

If the TR provider is unable to establish a transaction, it indicates this to the requester by
an TR_ABORT_IND. The originator of the primitive indicates a TR provider invoked release.
This is shown in Figure 3.14.� �

TR_BEGIN_REQ

TR_ABORT_IND

Figure 3.14: Sequence of Primitives – TR Provider Rejection of a Transaction Initiation
Attempt
 	
3.3 Connectionless Mode Services Definition

The connectionless mode service allows for the transfer of transaction user data in one
and both directions simultaneously without establishing a transaction dialogue. A set of
primitives are defined that carry transaction user data and control information between the
TR user and the TR provider entities. The primitives are modelled as requests initiated by

18 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Services Definition

the TR user and indications initiated by the TR provider. Indications may be initiated by
the TR provider independently from requests by the TR user.
The connectionless mode service consists of one phase.

3.3.1 Request and Response Primitives

• TR_UNI_REQ: This primitive requests that the TR provider send the transaction user
data to the specified destination.

• TR_UNI_IND: This primitive indicates to the TR user that a user data sequence has
been received from the specified originating address.

Figure 3.15 shows the sequence of primitives for the connectionless mode of transfer.� �
TR_UNI_REQ

TR_UNI_IND

Figure 3.15: Sequence of Primitives – Connectionless Mode Data Transfer
 	
• TR_NOTICE_IND: This primitive indicates to the TR user that the user data with the

specified destination address and QOS parameters produced an error. This primitive
is specific to CLTS.

Figure 3.16 shows the sequence of primitives for the CLTS error management primitive.� �
TR_UNI_REQ

TR_NOTICE_IND

Figure 3.16: Sequence of Primitives – CLTS Error Indication Service
 	

2008-10-31 19

Transaction Interface (TRI) TRI Primitives

4 TRI Primitives

This section describes the format and parameters of the TRI primitives. In addition, it
discusses the states in which the primitive is valid, the resulting state, and the acknowl-
edgement that the primitive expects.
The mapping of TRI of TRI primitives to the primitives defined in ITU-T Q.771, ITU-T
X.219 and ANSI T1.114 are shown in Appendix A [Mapping TRI Primitives], page 93.
The state/event tables for these primitives are shown in Appendix B [State/Event Tables],
page 99. The precedence tables for the TRI primitives are shown in Appendix C [Primitive
Precedence Tables], page 101.
The following tables provide a summary of the TR primitives and their parameters.

SERVICE PRIMITIVE PARAMETERS

TR_BEGIN_REQTR Initiation ()

TR_BEGIN_IND ()

TR_BEGIN_RES ()

TR_BEGIN_CON ()

Table 4. Transaction Initiation Transaction Service Primitives
SERVICE PRIMITIVE PARAMETERS

TR_CONT_REQTR Data Transfer ()

TR_CONT_IND ()

Table 5. Transaction Data Transfer Transaction Service Primitives
SERVICE PRIMITIVE PARAMETERS

TR_END_REQTR Termination ()

TR_END_IND ()

TR_ABORT_REQ ()

TR_ABORT_IND ()

Table 6. Transaction Termination Transaction Service Primitives

2008-10-31 21

Chapter 4: TRI Primitives

4.1 Management Primitives

These primitives apply to all transaction modes.

4.1.1 Transaction Information

4.1.1.1 Transaction Information Request

TR_INFO_REQ

This primitive request the TR provider to return the values of all supported protocol pa-
rameters (see Section 4.1.1.2 [Transaction Information Acknowledgement], page 24), and
also the current state of the TR provider (as defined in Appendix B [State/Event Tables],
page 99). This primitive does not affect the state of the TR provider and does not appear
in the state tables.

Format

The format of the message is one M_PCPROTO message block and its structure is as follows:

typedef struct TR_info_req {
ulong PRIM_type; /* Always TR_INFO_REQ */

} TR_info_req_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type. Always TR_INFO_REQ.

Modes

Both connection-mode and connectionless-mode.

Originator

Transaction user.

Valid States

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

Rules

For the rules governing the requests made by this primitive, see the TR_INFO_ACK primitive
described in Section 4.1.1.2 [Transaction Information Acknowledgement], page 24.

22 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements
upon receipt of the primitive and that the TR user wait for the acknowledgement before
issuing any other primitives:
— Successful: Correct acknowledgement of the primitive is indicated with the TR_INFO_

ACK primitive described in Section 4.1.1.2 [Transaction Information Acknowledgement],
page 24.

— Non-fatal Errors: These errors will be indicated with the TR_ERROR_ACK primitive de-
scribed in Section 4.1.4.2 [Transaction Error Acknowledgement], page 42. The allowable
errors are as follows:
There are no errors associated with the issuance of this primitive.

2008-10-31 23

Chapter 4: TRI Primitives

4.1.1.2 Transaction Information Acknowledgement

TR_INFO_ACK

This primitive indicates to the TR user any relevant protocol-dependent parameters.1

It should be initiated in response to the TR_INFO_REQ primitive described above under
Section 4.1.1.1 [Transaction Information Request], page 22.

Format

The format of the message is one M_PCPROTO message block and its structure is as follows:
typedef struct TR_info_ack {

long PRIM_type; /* Always TR_INFO_ACK */
long ASDU_size; /* maximum ASDU size */
long EASDU_size; /* maximum EASDU size */
long CDATA_size; /* connect data size */
long DDATA_size; /* discon data size */
long ADDR_size; /* address size */
long OPT_size; /* options size */
long TIDU_size; /* transaction i/f data unit size */
long SERV_type; /* service type */
long CURRENT_state; /* current state */
long PROVIDER_flag; /* type of TR provider */
long TRI_version; /* version # of tri that is supported */

} TR_info_ack_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type. Always TR_INFO_ACK.

ASDU_size
Indicates the maximum size (in octets) of Transaction Service User Data sup-
ported by the TR provider.

EASDU_size
Indicates the maximum size (in octets) of Expedited Transaction Service User
Data supported by the TR provider.

CDATA_size
Indicates the maximum number of octets of data that may be associated with
a transaction initiation primitive.

DDATA_size
Indicates the maximum number of octets of data that may be associated with
a transaction termination primitive.

1

24 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

ADDR_size
Indicates the maximum size (in decimal digits) of a protocol address.

OPT_size Indicates the maximum size (in decimal digits) of the options.

AIDU_size
Indicates the maximum size (in octets) of a Transaction Interface User Data
supported by the TR provider. This is the maximum amount of user data octets
that can be trasnfered acros the interface in a single data request primitive.

SERV_type
Indicates the service type.

CURRENT_state
Indicates the current interface state.

PROVIDER_flag
Indicates the transaction provider flags.

TRI_version
Indicates the TR version. This is Version 1 of the interface specification.

Modes

This primitive is valid in both connection mode and connectionless mode.

Originator

This primitive is issued by the TR provider.

Valid State

This primitive may be issued in response to a TR_INFO_REQ and is valid in any state.

New State

On success, the new state is unchanged; on error, unchanged.

Rules

The following rules apply whey the type is TR_CLTRS:
— The EASDU_size, CDATA_size and DDATA_size fields should be ‘-2’.
— The ASDU_size should equal the AIDU_size.

2008-10-31 25

Chapter 4: TRI Primitives

4.1.2 Transaction Protocol Address Management

4.1.2.1 Transaction Bind Request

TR_BIND_REQ

This primitive requests that the TR provider bind a protocol address to the stream, ne-
gotiate the number of dialogue indications allowed to be outstanding by the TR provider
for the specified protocol address, and activate1 the stream associated with the protocol
address.

Format

The format of the message is one M_PROTO message block. The format of the M_PROTO
message block is as follows:2

typedef struct TR_bind_req {
ulong PRIM_type; /* Always TR_BIND_REQ */
ulong ADDR_length; /* address length */
ulong ADDR_offset; /* address offset */
ulong XACT_number; /* maximum outstanding transaction reqs. */
ulong BIND_flags; /* bind flags */

} TR_bind_req_t;

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type. Always TR_BIND_REQ.

ADDR_length
Specifies the length3 of the protocol address to be bound to the stream.

ADDR_offset
Specifies the offset from the beginning of the M_PROTO message block where the
protocol address begins. The proper alignment of the address in the M_PROTO
message block is not guaranteed. The address in the M_PROTO message block is,
however, aligned the same as it was received from the TR user.

1 A stream is viewed as active when the transaction provider may receive and transmit APDUs (ACSE protocol
data units) associated with the stream.

2 The format of the TR_BIND_REQ primitive is chosen to be as consistent as possible with the equivalent TPI
and NPI primitives.

3 All lengths, offsets and sizes in all structures refer to the number of octets.

26 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

XACT_number
4The requested number of dialogue begin indications5 allowed to be outstanding
by the TR provider for the specified protocol address. Only one stream per
protocol address is allowed to have a XACT_number greater than zero. This
indicates to the TR provider that the stream is a listener stream for the TR user.
This stream will be used by the TR provider for dialogue “begin” indications
for that protocol address, see Section 4.2.1.2 [Transaction Begin Indication],
page 48.

BIND_flags
Unused.

Modes

This primitive is valid both in connection and connectionless modes.

Originator

This primitive is issued by the TR user.

Valid State

This primitive is valid in state TRS_UNBND.

New State

The new state is TRS_WACK_BREQ.

Rules

For the rules governing the requests made by this primitive, see the TR_BIND_ACK primitive
described in Section 4.1.2.2 [Transaction Bind Acknowledgement], page 29.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements
upon receipt of the primitive:
— Successful: Correct acknowledgement of the primitive is indicated with the TR_BIND_

ACK primitive described in Section 4.1.2.2 [Transaction Bind Acknowledgement],
page 29.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive de-
scribed in Section 4.1.4.2 [Transaction Error Acknowledgement], page 42. The allowable
errors are as follows:

TRBAADDR Indicates that the protocol address was in an incorrect format or the ad-
dress contained illegal information. It is not intended to indicate protocol
errors.

4 This field should be ignored by TR providers providing only a unidirectional (TCAP operation class 4, ROSE
operation class 5) service.

5 If the number of outstanding “begin” indications equals XACT_number, the TR provider need not discard fur-
ther incoming “begin” indications, but may choose to queue them internally until the number of outstanding
“begin” indications dropts below XACT_number.

2008-10-31 27

Chapter 4: TRI Primitives

TRNOADDR Indicates that the TR provider could not allocate an address.

TRACCES Indicates that the user did not have proper permissions for the use of the
requested address.

TROUTSTATE
The primitive would place the transaction interface out of state for the
indicated transaction.

TRSYSERR A system error occurred and the UNIX System error is indicated in the
primitive.

TRADDRBUSY
Indicates that the requested address is already in use.

28 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

4.1.2.2 Transaction Bind Acknowledgement

TR_BIND_ACK

This primitive indicates to the TR user that the specified protocol address has been bound
to the stream, that the specified number of dialogue indications are allowed to be queued
by the TR provider for the specified protocol address, and that the stream associated with
the specified protocol address has been activated.

Format

The format of the message is one M_PCPROTO message block. The format of the M_PCPROTO
message block is as follows:

typedef struct TR_bind_ack {
ulong PRIM_type; /* Always TR_BIND_ACK */
ulong ADDR_length; /* address length */
ulong ADDR_offset; /* address offset */
ulong XACT_number; /* open transactions */
ulong TOKEN_value; /* value of "token" assigned to stream */

} TR_bind_ack_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type. Always TR_BIND_ACK.

ADDR_length
Indicates the length of the protocol address that was bound to the stream.

ADDR_offset
Indicates the offset from the beginning of the M_PCPROTO message block where
the protocol address begins. The proper alignment of the address in the M_
PCPROTO message block is not guaranteed.

XACT_number
1 Indicates the accepted number of dialogue indications allowed to be outstand-
ing by the TR provider for the specified protocol address.

TOKEN_value
Indicates a token value to be used when accepting dialogues indicated on other
streams using this stream.

Modes

This primitive is valid in bidirectional and unidirectional modes.

Originator

This primitive is issued by the TR provider.

1 This field does not apply to unidirectional TR providers.

2008-10-31 29

Chapter 4: TRI Primitives

Valid State

This primitive is issued in response to a TR_BIND_REQ and is valid in state TRS_WACK_BREQ.

New State

On success, the new state is TRS_IDLE; on error, TRS_UNBND.

Rules

The following rules apply to the binding of the specified protocol address to the stream:
— If the ADDR_length field in the TR_BIND_REQ primitive is zero (0), then the TR provider

must assign a protocol address to the user.
— The TR provider is to bind the protocol address as specified in the TR_BIND_REQ prim-

itive. If the requested protocol address is in use or if the TR provider cannot bind the
specified address, it must return an error.

The following rules apply to negotiating the XACT_number argument:
— The returned value must be less than or equal to the corresponding requested number

as indicated in the TR_BIND_REQ primitive.
— If the requested value is greater than zero, the returned value must also be greater than

zero.
— Only one stream that is bound to the indicated protocol address any have a negotiated

accepted number of maximum transaction requests greater than zero. If a TR_BIND_
REQ primitive specifies a value greater than zero, but another stream has already bound
itself to the given protocol address with a value greater than zero, the TR provider must
return an error.

— If a stream with XACT_number greater than zero is used to accept a dialogue (without
specifying a TRANS_id), the stream will be found busy during the duration of that
connection and no other streams may be bound to that protocol address with a XACT_
number greater than zero. This will prevent more than one stream bound to the
identical protocol address from accepting dialogue indications. See also Section 4.2.1.3
[Transaction Begin Response], page 50.

— A stream requesting a XACT_number of zero should always be legal. This indicates to
the TR provider that the stream is to be used to request dialogues only.

— stream with a negotiated XACT_number greater than zero may generate dialogue re-
quests (see Section 4.2.1.1 [Transaction Begin Request], page 45,) or accept dialogue
indications (see Section 4.2.1.3 [Transaction Begin Response], page 50.)

If the above rules result in an error condition, then the TR provider must issue a TR_
ERROR_ACK primitive to the TR user specifying the error as defined in the description of the
TR_BIND_REQ primitive, Section 4.1.2.1 [Transaction Bind Request], page 26.

30 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

4.1.2.3 Transaction Unbind Request

TR_UNBIND_REQ

This primitive requests that the TR provider unbind the protocol address previously asso-
ciated with the stream and deactivate the stream.

Format

The format of the message is one M_PROTO message block structured as follows:
typedef struct TR_unbind_req {

ulong PRIM_type; /* Always TR_UNBIND_REQ */
} TR_unbind_req_t;

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type. Always TR_UNBIND_REQ.

Mode

This primitive is valid in both unidirectional and bidirectional modes.

Originator

This primitive is originated by the TR user.

Valid State

This primitive is valid in state TRS_IDLE.

New State

The new state is TRS_WACK_UREQ.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements
upon receipt of the primitive:
— Successful: Correct acknowledgement of the primitive is indicated with the TR_OK_ACK

primitive described in Section 4.1.4.1 [Transaction Successful Receipt Acknowledge-
ment], page 41.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive de-
scribed in Section 4.1.4.2 [Transaction Error Acknowledgement], page 42. The allowable
errors are as follows:

TROUTSTATE
The primitive would place the transaction interface out of state for the
indicated transaction.

TRSYSERR A system error occurred and the UNIX System error is indicated in the
primitive.

2008-10-31 31

Chapter 4: TRI Primitives

4.1.2.4 Transaction Protocol Address Request

TR_ADDR_REQ

This primitive requests that the TR provider return the local protocol address that is
bound to the stream and the address of the remote ASE if a transaction association has
been established.

Format

The format of the message is one M_PROTO message block structured as follows:

typedef struct TR_addr_req {
long PRIM_type; /* always TR_ADDR_REQ */
ulong TRANS_id; /* Transaction id */

} TR_addr_req_t;

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type. Always TR_ADDR_REQ.

TRANS_id Specifies the transaction association identifier for which address service is re-
quested. If address service is requested for local bind address only, then the
transaction identifier must be ‘-1’.

Mode

This primitive is valid in both unidirectional and bidirectional modes.

Originator

This primitive is originated by the TR user.

Valid State

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state is unchanged.

Rules

For the rules governing the requests made by this primitive, see the TR_ADDR_ACK primitive
described in Section 4.1.2.5 [Transaction Protocol Address Acknowledgement], page 34.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements
upon receipt of the primitive:

32 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

— Successful: Correct acknowledgement of the primitive is indicated with the TR_ADDR_
ACK primitive described in Section 4.1.2.5 [Transaction Protocol Address Acknowledge-
ment], page 34.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive de-
scribed in Section 4.1.4.2 [Transaction Error Acknowledgement], page 42. The allowable
errors are as follows:

TRBADID The transaction identifier specified in the primitive was incorrect or invalid.

TRNOTSUPPORT
This primitive is not supported by the transaction provider.

TRSYSERR A system error has occured and the Linux system error is indicated in the
primitive.

2008-10-31 33

Chapter 4: TRI Primitives

4.1.2.5 Transaction Protocol Address Acknowledgement

TR_ADDR_ACK

This primitive indicates to the TR user the addresses of the local and remote ASE. The
local address is the protocol address that has been bound to the stream. If an transaction
association has been established, the remote address is the protocol address of the remote
ASE.

Format

The format of the message is one M_PCPROTO message block structured as follows:

typedef struct TR_addr_ack {
long PRIM_type; /* always TR_ADDR_ACK */
long LOCADDR_length; /* length of local address */
long LOCADDR_offset; /* offset of local address */
long REMADDR_length; /* length of remote address */
long REMADDR_offset; /* offset of remote address */

} TR_addr_ack_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type. Always TR_ADDR_ACK.

LOCADDR_length
Indicates the length of the protocol address that was bound to the stream.

LOCADDR_offset
Indicates the offset from the beginning of the M_PCPROTO message block where
the protocol address begins.

REMADDR_length
Indicates the length of the protocol address of the remote ASE.

REMADDR_offset
Indicates the offset from the beginning of the M_PCPROTO message block where
the protocol address begins.

The proper alignement of the addresses in the M_PCPROTO message block is not guaranteed.

Modes

Both connection-mode and connectionless-mode.

Originator

Transaction provider.

34 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

Valid State

This primitive is issued in response to a TR_ADDR_REQ primitive and is valid in any state
where a response is pending to a TR_ADDR_REQ.

New State

The new state remains unchanged.

Rules

The following rules apply:
— If the requested transaction identifier was ‘-1’ in the corresponding TR_ADDR_REQ prim-

itive, and the transaction endpoint is not bound to a local address, (i.e. it is in the
TRS_UNINIT or TRS_UNBND state) the LOCADDR_length and LOCADDR_offset fields must
be set to ‘0’.

— If the requested transaction exists as identifed in the corresponding TR_ADDR_REQ prim-
itive, LOCADDR_length and LOCADDR_offset fields will be populated to reflect the local
association address for the specified transaction.

— If the requested transaction identifier was ‘-1’ in the corresponding TR_ADDR_REQ prim-
itive, the REMADDR_length and REMADDR_offset fields must be set to ‘0’.

— If the requested transaction exists as identified in the corresponding TR_ADDR_REQ prim-
itive, REMADDR_length and REMADDR_offset fields will be populated to reflect the re-
mote association address for the specified transaction.

2008-10-31 35

Chapter 4: TRI Primitives

4.1.3 Transaction Options Management

4.1.3.1 Transaction Options Management Request

TR_OPTMGMT_REQ

This primitive alllows the transaction user to manage the options associated with the stream.
The format of the message is one M_PROTO message block.

Format

The format of the message is one M_PCPROTO message block structured as follows:
typedef struct TR_optmgmt_req {

ulong PRIM_type; /* Always TR_OPTMGMT_REQ */
ulong OPT_length; /* options length */
ulong OPT_offset; /* options offset */
ulong MGMT_flags; /* options data flags */

} TR_optmgmt_req_t;

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type. Always TR_OPTMGMT_REQ.

OPT_length
Specifies the length of the protocol options associated with the primitive.

OPT_offset
Specifies the offset from the beginning of the M_PROTO message block where the
options begin.

MGMT_flags
Specifies the management flags which define the request made by the transaction
user.

The proper alignment of the options is not guaranteed. The options are, however, aligned
the same as received from the transaction user.

Flags

The allowable flags are:

TR_NEGOTIATE
Negotiate and set the options with the transaction provider.

TR_CHECK Check the validity of the specified options.

TR_DEFAULT
Return the default options.

TR_CURRENT
Return the currently effective option values.

36 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

Modes

This primitive is valid both in unidirectional and bidirectional modes.

Originator

This primitive is originated by the transaction user.

Valid State

This primitive is valid in any state where the transaction user is not expecting a local
acknowledgement.

New State

The state remains unchanged.

Rules

For the rules governing the requests made by this primitive, see the TR_OPTMGMT_ACK prim-
itive described in Section 4.1.3.2 [Transaction Options Management Acknowledgement],
page 38.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements
upon receipt of the primitive, and that the transaction user wait for the acknowledgement
before issuing any other primitives:
— Successful: Correct acknowledgement is indicated with the TR_OPTMGMT_ACK primi-

tive described in Section 4.1.3.2 [Transaction Options Management Acknowledgement],
page 38.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive de-
scribed in Section 4.1.4.2 [Transaction Error Acknowledgement], page 42. The allowable
errors are as follows:

TRACCES The user did not have proper permissions for the use of the requested
options.

TRBADFLAG
The flags as sepcified were incorrect or invalid.

TRBADOPT The options as specified were in an incorrect ofrmat, or they contained
invalid information.

TROUTSTATE
The primitive would place the transaction interface out of state for the
indicated transaction.

TRNOTSUPPORT
This primiitve is not supported by the transaction provider.

TRSYSERR A system error occurred and the UNIX System error is indicated in the
primitive.

2008-10-31 37

Chapter 4: TRI Primitives

4.1.3.2 Transaction Options Management Acknowledgement

TR_OPTMGMT_ACK

This primitive indicates to the transaction user that the options management request has
completed.

Format

The format of the message is one M_PCPROTO message block structured as follows:

typedef struct TR_optmgmt_ack {
ulong PRIM_type; /* Always TR_OPTMGMT_ACK */
ulong OPT_length; /* options length */
ulong OPT_offset; /* options offset */
ulong MGMT_flags; /* options data flags */

} TR_optmgmt_ack_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type. Always TR_OPTMGMT_ACK.

OPT_length
Indicates the length of the protocol options associated with the primitive.

OPT_offset
Indicates the offset from the beginning of the M_PCPROTO message block where
the options begin. The proper alignment of the options is not guaranteed.

MGMT_flags
Indicates the management flags in the same form as specified in the
TR_OPTMGMT_REQ primitive, See Section 4.1.3.1 [Transaction Options
Management Request], page 36, with any additional flags as specified below.

Flags

The flags returned in MGMT_flags represents the single most severe result of the operation.
The flags returned will be one of the following values (in order of decreasing severity):

TR_NOTSUPPORT
This flag indicates that at least one of the options specified in the TR_OPTMGMT_
REQ primitive was not supported by the trasnaction provider at the current
privilege level of the requesting user.

TR_READONLY
This flag indicates that at least one of the options specified in the TR_OPTMGMT_
REQ primitive is read-only (for the current TRI state). This flag does not apply
when the MGMT_flags field in the TR_OPTMGMT_REQ primitive was T_DEFAULT.

38 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

TR_FAILURE
This flag indicates that negotiation of at least one of the options specified in the
TR_OPTMGMT_REQ primitive failed. This is not used for illegal format or values.
This flag does not apply when the MGMT_flags field in the TR_OPTMGMT_REQ
primitive was T_DEFAULT or T_CURRENT.

TR_PARTSUCCESS
This flag indicates that the negotiation of at least one of the options specified in
the TR_OPTMGMT_REQ primitive was negotiated to a value of lesser quality than
the value requested. This flag only applies when the MGMT_flags field of the
TR_OPGMGMT_REQ primitive was T_NEGOTIATE.

TR_SUCCESS
This flag indicates that all of the specified options were negoitated or returned
successfully.

Mode

This primitive is valid in both unidirectional and bidirectional modes.

Originator

This primitive is originated by the TR provider.

Valid State

This primitive is issued in response to a TR_OPTMGMT_REQ primitive and is valid in any state.

New State

The new state remains unchanged.

Rules

The following rules apply to the TR_OPTMGMT_ACK primitive:
— If the value of MGMT_flags in the TR_OPTMGMT_REQ primitive is TR_DEFAULT, the

provider should return the default provider options without changing the existing
options associated with the Stream.

— If the value of MGMT_flags in the TR_OPTMGMT_REQ primitive is TR_CHECK, the provider
should return the options as specified in the TR_OPTMGMT_REQ primitive along with the
additional flags TR_SUCCESS or TR_FAILURE which indicate to the user whether the
specified options are supportable by the provider. The provider should not change any
existing options associated with the Stream.

— If the value of MGMT_flags in the TR_OPTMGMT_REQ primitive is TR_NEGOTIATE, the
provider should set and negotiate the option as specified by the following rules:
− If the OPT_length field of the TR_OPTMGMT_REQ primitive is zero (‘0’), then the

transaction provider is to set and return the default options associated with the
Stream in the TR_OPTMGMT_ACK primitive.

− If options are specified in the TR_OPTMGMT_REQ primitive, then the transaction
provider should negotiate those options, set the negotiated options and return the

2008-10-31 39

Chapter 4: TRI Primitives

negotiated options in the TR_OPTMGMT_ACK pirmitive. It is the user’s responsibility
to check the negotiated options returned in the TR_OPMGMT_ACK primitive and take
appropriate action.

— If the value of MGMT_flags in the TR_OPTMGMT_REQ primtiive is TR_CURRENT, the
provider should return the currently effective option values without changing any
existing options associated with the Stream.

Errors

If the above rules result in an error condition, the transaction provider must issue a TR_
ERROR_ACK primitive (see Section 4.1.4.2 [Transaction Error Acknowledgement], page 42) to
the transaction user specifying the error as defined in the description of the TR_OPTMGMT_REQ
primitive (see Section 4.1.3.1 [Transaction Options Management Request], page 36).

40 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

4.1.4 Transaction Error Management

4.1.4.1 Transaction Successful Receipt Acknowledgement

TR_OK_ACK

This primitive indicates to the TR user that the previous TR-user-originated primitive was
received successfully by the TR provider. It does not indicate to the TR user any TR
protocol action taken due to the issuance of the last primitive. This may only be initiated
as an acknowledgement for those primitives that require one.

Format

The format of the message is one M_PCPROTO message block structured as follows:
typedef struct TR_ok_ack {

ulong PRIM_type; /* Always TR_OK_ACK */
ulong CORRECT_prim; /* correct primitive */

} TR_ok_ack_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type. Always TR_OK_ACK.

CORRECT_prim
Indicates the primitive type that was successfully received.

Modes

This primitive is valid in all Operations Classes.

Originator

This primitive is issued by the TR provider.

Valid State

Valid in any state where a local acknowledgement requiring TR_OK_ACK response is pending.

New State

Depends on the current state; see Appendix B [State/Event Tables], page 99.

2008-10-31 41

Chapter 4: TRI Primitives

4.1.4.2 Transaction Error Acknowledgement

TR_ERROR_ACK

This primitive indicates to the TR user that a non-fatal1 error has occurred in the last
TR-user-originated primitive. This may only be initiated as an acknowledgement for those
primitives that require one. It also indicates to the TR user that no action was taken on
the primitive that cause the error.

Format

The format of the message is one M_PCPROTO message block structured as follows:

typedef struct TR_error_ack {
ulong PRIM_type; /* Always TR_ERROR_ACK */
ulong ERROR_prim; /* primitive in error */
ulong TRI_error; /* TRI error code */
ulong UNIX_error; /* UNIX error code */
ulong TRANS_id; /* Transaction id */

} TR_error_ack_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type. Always TR_ERROR_ACK.

ERROR_prim
Indicates the primitive type that was in error.

TRI_error
Indicates the Transaction Sub-Layer Interface error code.

UNIX_error
Indicates the UNIX System error code. This field is zero (0) unless the TRI_
error is equal to TRSYSERR.

TRANS_id Indicaets the transcation identifier for the transaction upon which the primitive
caused an error.

Mode

This primitive can be issued in any Operations Class.

Originator

This primitive is originated by the TR provider.

1 For an overview of the error handling capabilities available to the TR provider, see Chapter 5 [Diagnostics
Requirements], page 73.

42 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

Valid State

This primitive is valid in any state where a local acknowledgement is pending and an error
has occurred.

New State

The new state is the state that the interface was in before the primitive in error was issued,
see Appendix B [State/Event Tables], page 99.

Rules

This primitive may only be issued as an acknowledgement for those primitives that require
one. It also indicates to the user that no action was taken on the primtiive that caused the
error.

Errors

The TR provider is allowed to return any of the following TR error codes:

TRBADADDR
Indicates that the protocol address as specified in the primitive was of an in-
correct format or the address contained illegal information.

TRBADOPT Indicates that the options as specified in the primitive were in an incorrect
format, or they contained illegal information.

TRBADF Indicates that the stream queue pointer as specified in the primitive was illegal.

TRNOADDR Indicates that the TR provider could not allocate a protocol address.

TRACCES Indicates that the user did not have proper permissions to use the protocol
address or options specified in the primitive.

TROUTSTATE
Indicates that the primitive would place the interface out of state.

TRBADSEQ Indicates that the transaction identifier specified in the primitive was incorrect
or illegal.

TRBADFLAG
Indicates that the flags specified in the primitive were incorrect or illegal.

TRBADDATA
Indicates that the amount of user data specified was illegal.

TRSYSERR Indicates that a system error has occurred and that the UNIX System error is
indicated in the primitive.

TRADDRBUSY
Indicates that the requested address is already in use.

TRRESADDR
Indicates that the TR provider requires the responding stream be bound to the
same protocol address as the stream on which the dialogue “begin” indication
(see Section 4.2.1.2 [Transaction Begin Indication], page 48) was received.

2008-10-31 43

Chapter 4: TRI Primitives

TRNOTSUPPORT
Indicates that the TR provider does not support the requested capability.

44 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

4.2 Connection-Oriented Mode Primitives

4.2.1 Transaction Establishment

The transaction begin service provides means to start a transaction between two TR-users.
This may be accompanied by the transfer of TR-user information contained in M_DATA
message blocks accompanying the primitive.

4.2.1.1 Transaction Begin Request

TR_BEGIN_REQ

This primitive requests that the TR provider form an transaction association to the specified
destination protocol address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA
message blocks if any user data is specified by the TR user. The format of the M_PROTO
message block is as follows:

typedef struct TR_begin_req {
ulong PRIM_type; /* Always TR_BEGIN_REQ */
ulong CORR_id; /* Correlation Id */
ulong ASSOC_flags; /* Association flags */
ulong DEST_length; /* Destination address length */
ulong DEST_offset; /* Destination address offset */
ulong ORIG_length; /* Originating address length */
ulong ORIG_offset; /* Originating address offset */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_begin_req_t;

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type: always TR_BEGIN_REQ.

CORR_id Specifies the correlation identifier for the newly formed transaction. The cor-
relation identifier is an identifier chose by the TR user that uniquely identifies
this transaction association establishment request from other establishment re-
quests on the same stream. If the CORR_id is zero (0), it specifies that this is
the only transaction to be formed on the requesting stream and attempts to
form additional transactions before this transaction is complete will fail. The
value of CORR_id will be returned in

ASSOC_flags
Specifies the option flags provided with the primitive. See “Flags” below. Some
flags may be provider specific.

2008-10-31 45

Chapter 4: TRI Primitives

DEST_length
Specifies the length of the protocol address to which to establish an transaction
association.

DEST_offset
Specifies the offset from the beginning of the M_PROTO message block where the
protocol address begins.

ORIG_length
Specifies the length of the protocol address from which to establish an transac-
tion association.

ORIG_offset
Specifies the offset from the beginning of the M_PROTO message block where the
protocol address begins.

OPT_length
Specifies the length of the protocol options associated with the transaction.

OPT_offset
Specifies the offset from the beginning of the M_PROTO message block where the
protocol options begin.

Flags

TR_SEQ_ASSURANCE
By setting this flag on the primitive, the originating transaction user can indi-
cate that “sequence assured” service is requested from the underlying network
service provider.

TR_NO_PERMISSION
By setting this flag on the primitive, the originating transaction user can either
deny (set) or grant (clear) permission for the transaction peer to terminate the
transaction association upon receipt of the corresponding primitive at the peer
(see Section 4.2.1.2 [Transaction Begin Indication], page 48). This flag can only
be used with transaction provider that support it (see [Addendum for ANSI
Conformance], page 85).

Valid State

This primitive is valid in transaction state TRS_IDLE. This primitive is only valid in
connection-oriented mode.

New State

The new state for the interface is TRS_WACK_CREQ.

Rules

The following rules apply to the specification of parameters to this primitive:
— When the originating address is not specified, ORIG_length and ORIG_offset must be

specified as zero (0).

46 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

— When the ORIG_length and ORIG_offset are zero (0), the originating address is the
local address that is implicitly associated with the access point from the local bind
service (see Section 4.1.2.1 [Transaction Bind Request], page 26).

— The destination address must be specified and the TR provider will return error
TRNOADDR if the DEST_length and DEST_offset are zero (0).

Acknowledgements

This primitive requires the transaction provider to generate one of the following acknowl-
edgements upon receipt of the primitive:
— Successful Association Establishment: This is indicated with the TR_BEGIN_CON prim-

itive described in Section 4.2.1.1 [Transaction Begin Request], page 45. This results
in the TRS_DATA_XFER state for the transaction. Successful establishment and tear
down can also be indicated with the TR_END_IND primitive described in Section 4.2.3.2
[Transaction End Indication], page 62. This results in the TRS_IDLE state for the
transaction.

— Unsuccessful Association Establishment: This is indicated with the TR_ABORT_IND
primitive described in Section 4.2.3.4 [Transaction Abort Indication], page 66. For
example, an association may be rejected because either the called transaction user can-
not be reached, or the transaction provider or the called transaction user did not agree
on the specified options. This results in the TRS_IDLE state for the transaction.

— Non-fatal errors: These are indicated with the TR_ERROR_ACK primitive. The applicable
non-fatal errors are defined as follows:

TRACCES This indicates that the user did not have proper permissions for the use of
the requested protocol address or protocol options.

TRBADADDR
This indicates that the protocol address was in an incorrect format or the
address contained illegal information. It is not intended to indicate protocol
connection errors, such as an unreachable destination. Those types of errors
are indicated with the TR_ABORT_IND primitive described in Section 4.2.3.4
[Transaction Abort Indication], page 66.

TRBADOPT This indicates that the options were in an incorrect format or they con-
tained illegal information.

TROUTSTATE
The primitive would place the transaction interface out of state.

TRBADDATA
The amount of user data specified was illegal (see Section 4.1.1.2 [Trans-
action Information Acknowledgement], page 24).

TRSYSERR A system error has occured and the UNIX System error is indicated in the
primitive.

2008-10-31 47

Chapter 4: TRI Primitives

4.2.1.2 Transaction Begin Indication

TR_BEGIN_IND

This primitive indicates to the destination TR user that a transaction association begin
request has been made by the user at the specified source protocol address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA
message blocks containing user data for the association, structured as follows:

typedef struct TR_begin_ind {
ulong PRIM_type; /* Always TR_BEGIN_IND */
ulong TRANS_id; /* Transaction id */
ulong ASSOC_flags; /* Association flags */
ulong DEST_length; /* Destination address length */
ulong DEST_offset; /* Destination address offset */
ulong ORIG_length; /* Originating address length */
ulong ORIG_offset; /* Originating address offset */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_begin_ind_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type: always TR_BEGIN_IND.

TRANS_id Indicates the transaction identifier associated by the transaction provider with
this begin indication.

ASSOC_flags
Specifies the option flags provided with the primitive. See “Flags” below. Some
flags may be provider specific.

DEST_length
Indicates the length of the protocol address to which a transaction association
was requested established by the peer.

DEST_offset
Indicates the offset from the beginning of the M_PROTO message block where the
protocol address begins.

ORIG_length
Indicates the length of the protocol address from which a transaction association
was requested established.

ORIG_offset
Indicates the offset from the beginning of the M_PROTO message block where the
protocol address begins.

48 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

OPT_length
Indicates the length of the protocol options associated with the transaction
begin indication.

OPT_offset
Indicates the offset from the beginning of the M_PROTO message block where the
protocol options begin.

Flags

TR_NO_PERMISSION
The value of this flag may indicate either that the transaction peer gives per-
mission (clear) to end the transaction association or refuses permission (set) to
end the transaction association. This flag is only valid for transaction providers
that support it (see [Addendum for ANSI Conformance], page 85).

Valid State

This primitive is valid in state TRS_IDLE. This primitive is only valid in connection-oriented
mode.

New State

The new state for the identified transaction is TRS_WRES_CIND.

Rules

The following rules apply to the issuance of this primitive by the transaction provider:
— The transaction identifier provided by the transaction provider uniquely identifies this

transaction begin indication within the stream upon which the primitive is issued. This
must be a positive, non-zero value. The high bit of the transaction identifier is reserved
for exclusive use by the transaction user in generating correlation identifiers.

— It is not necessary to indicate a destination address in DEST_length, and DEST_offset
when the protocol address to which the begin indication corresponds is the same as
the local protocol address to which the listening stream is bound. In the case that
the destination protocol address is not provided, DEST_length and DEST_offset must
both be set to zero (0). When the local protocol address to which the begin indication
corresponds is not the same as the bound address for the stream, the transaction
provider must indicate the destination protocol address using DEST_length and DEST_
offset.

— The origination protocol address is a mandatory field. The transaction provider must
indicate the originating protocol address corresponding to the begin indication using
the ORIG_length and ORIG_offset fields.

— Any indicated options are included in the OPT_length and OPT_offset fields.
— When the TR_NO_PERMISSION flag is set, the transaction user must not issue a TR_END_

REQ primitive in response to this indication.

2008-10-31 49

Chapter 4: TRI Primitives

4.2.1.3 Transaction Begin Response

TR_BEGIN_RES

This primitive allows the destination TR user to request that the transaction provider accept
a previous transaction association begin indication.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA
message blocks containing user data for the association, structured as follows:

typedef struct TR_begin_res {
ulong PRIM_type; /* Always TR_BEGIN_RES */
ulong TRANS_id; /* Transaction id */
ulong ASSOC_flags; /* Association flags */
ulong ORIG_length; /* Originating address length */
ulong ORIG_offset; /* Originating address offset */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_begin_res_t;

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type: always TR_BEGIN_RES.

TRANS_id Specifies the transaction identifier of an outstanding begin indication to which
the transaction user is responding.

ASSOC_flags
Specifies the option flags provided with the primitive. See “Flags” below. Some
flags may be provider specific.

ORIG_length
Specifies the length of the protocol address to be used as the responding address.

ORIG_offset
Specifies the offset from the beginning of the M_PROTO message block where the
protocol address begins.

OPT_length
Specifies the length of the protocol options to be associated with the begin
response.

OPT_offset
Specifies the offset from the beginning of the M_PROTO message block where the
protocol options begin.

50 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

Flags

TR_SEQ_ASSURANCE
By setting this flag on the primitive, the originating transaction user can indi-
cate that “sequence assured” service is requested from the underlying network
service provider.

TR_NO_PERMISSION
By setting this flag on the primitive, the originating transaction user can either
deny (set) or grant (clear) permission for the transaction peer to terminate the
transaction association upon receipt of the corresponding primitive at the peer
(see Section 4.2.1.2 [Transaction Begin Indication], page 48). This flag can only
be used with transaction provider that support it (see [Addendum for ANSI
Conformance], page 85).

Valid State

This primitive is valid in transaction state TRS_WRES_CIND. This primitive is only valid in
connection-oriented mode.

New State

The new state for the specified transaction is TRS_DATA_XFER.

Rules

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements
upon receipt of the primitive:
— Successful: Correct acknowledgement of the primitive is indicated with the TR_OK_ACK

primitive described in Section 4.1.4.1 [Transaction Successful Receipt Acknowledge-
ment], page 41.

— Unsuccessful (Non-fatal errors): These errors will be indicated with the TR_ERROR_ACK
primitive described in Section 4.1.4.2 [Transaction Error Acknowledgement], page 42.
The allowable errors are as follows:

TRBADF The token specified is not associated with an open stream.

TRBADOPT The options were in an incorrect format, or they contained illegal informa-
tion.

TRACCES The user did not have proper permissions for the use of the responding
protocol address or protocol options.

TROUTSTATE
The primitive would place the transaction interface out of state for the
indicated transaction.

TRBADDATA
The amount of user data specified was outside the range supported by the
transaction provider.

2008-10-31 51

Chapter 4: TRI Primitives

TRBADSEQ The transaction identifier specified in the primitive was incorrect or illegal.

TRSYSERR A system error occurred and the UNIX System error is indicated in the
primitive.

TRRESADDR
The transaction provider requires that the responding stream is bound to
the same address as the stream on which the transaction association begin
indication was received.

TRBADADDR
This indicates that the protocol address was in an incorrect format or the
protocol address contained illegal information.

52 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

4.2.1.4 Transaction Begin Confirmation

TR_BEGIN_CON

This primitive indicates to the source transaction user that a previous transaction associa-
tion begin request has been confirmed on the specified responding protocol address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA
message blocks containing user data for the association, structured as follows:

typedef struct TR_begin_con {
ulong PRIM_type; /* Always TR_BEGIN_CON */
ulong CORR_id; /* Correlation Id */
ulong TRANS_id; /* Transaction id */
ulong ASSOC_flags; /* Association flags */
ulong ORIG_length; /* Originating address length */
ulong ORIG_offset; /* Originating address offset */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_begin_con_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type: always TR_BEGIN_CON.

CORR_id Indicates the correlation identifier used by the transport user to uniquely iden-
tify the transaction begin request of the stream to which this confirmation
corresponds. This is the transaction user assigned transaction identifier of the
corresponding TR_BEGIN_REQ that this message is confirming.

TRANS_id Indicates the transaction identifier provided by the transport provider to
uniquely identify the transaction on this stream.

ASSOC_flags
Indicates the option flags provided with the primitive. See “Flags” below. Some
flags may be provider specific.

ORIG_length
Indicates the length of the responding protocol address from which the confir-
mation was received.

ORIG_offset
Indicates the offset from the beginning of the M_PROTO message block where the
responding protocol address begins.

OPT_length
Indicates the length of the confirmed protocol options negotiated by the trans-
action peer.

2008-10-31 53

Chapter 4: TRI Primitives

OPT_offset
Indicates the offset from the beginning of the M_PROTO message block where the
confirmed protocol options begin.

The proper alignment of the responding address and options in the M_PROTO message block
is not guaranteed.

Flags

The following association flags are defined:

TR_NO_PERMISSION
The value of this flag may indicate either that the transaction peer gives per-
mission (clear) to end the transaction association or refuses permission (set) to
end the transaction association. This flag is only valid for transaction providers
that support it (see [Addendum for ANSI Conformance], page 85).

Mode

This primitive is only valid in connection-oriented mode.

Originator

Transaction provider.

Valid State

This primitive is valid in transaction state TRS_WCON_CREQ.

New State

The new state for the transaction is TRS_DATA_XFER.

Rules

The following rules apply to the issuance of this primitive:
— It is not always necessary for the transport provider to provide the responding ad-

dress in the ORIG_length and ORIG_offiset fields. Where the responding protocol
address is the same as the destination protocol address for which the transaction ini-
tialization was requested, it is not necessary to provide the responding address in the
TR BEGIN CON. Where the responding protocol address is not provided, the ORIG_
length and ORIG_offset fields are set to zero (0).

— When the TR_NO_PERMISSION flag is set, the transaction user must not issue a TR_END_
REQ primitive in response to this indication.

54 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

4.2.2 Transaction Data Transfer

The data transfer service primitives provide for an exchange of transaction user data known
as TSDUs, in either direction or in both directions simultaneously on a transaction asso-
ciation. The transaction service preserves both the sequence and the boundaries of the
TSDUs.

4.2.2.1 Transaction Continue Request

TR_CONT_REQ

This user-originated primitive specifies to the transaction provider that this message con-
tains transaction user data. It allows the transfer of transaction user data between trans-
action users, without modification by the transaction provider.
The transaction user must send an integral number of octets of data greater than zero. In
a case where the size of the TSDU exceeds the TIDU (as specified by the size of the TIDU_
size parameter of the TR_INFO_ACK primitive described in Section 4.1.1.2 [Transaction
Information Acknowledgement], page 24), the TSDU may be broken up into more than one
TIDU. When a TSDU is broken up into more than one TIDU, the T_MORE flag will be set
on each TIDU except the last one.

Format

The format of the message is one or more M_DATA message blocks. Use of a M_PROTO message
block is optional. The M_PROTO message block is used for two reasons:
a. to indicate that the TSDU is broken into more than one TIDU, and that the data

carried in the following M_DATA message block constitutes one TIDU;
b. to indicate whether receipt confirmation is desired for the TSDU.

message block, followed by zero or more M_DATA message blocks containing user data for
the association, structured as follows:

typedef struct TR_cont_req {
ulong PRIM_type; /* Always TR_CONT_REQ */
ulong TRANS_id; /* Transaction id */
ulong ASSOC_flags; /* Association flags */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_cont_req_t;

Guidelines for use of M_PROTO

The following guidelines must be followed with respect to the user of the M_PROTO message
block:
1. The M_PROTO message block need not be present when the TSDU size is less that or

equal to the TIDU size and one of the following is true:
— receipt confirmation has been negotiated for non-use; or
— receipt confirmation has been successfully negotiated for use or non-use and the

default selection as specified via the TR_OPTMGMT_REQ primitive is to be used.

2008-10-31 55

Chapter 4: TRI Primitives

2. The M_PROTO message block must be present when:

— the TSDU size is greater than the TIDU size;

— receipt confirmation has been successfully negotiated for use and the default se-
lection as specified with the TR_OPTMGMT_REQ primitive needs to be overridden.

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type: always TR_CONT_REQ.

TRANS_id Specifies the transaction identifier previously indicated by the transport
provider to uniquely identify the transaction. The transaction identifier must
be specified by the transaction user unless there is only one transaction
supported by the stream in transaction state TRS_DATA_XFER. When specified,
the transaction identifier must be the same as the transaction identifier that
was indicated by the transaction provider in the corresponding TR_BEGIN_IND
or TR_BEGIN_CON.

ASSOC_flags
Specifies the option flags provided with the primitive. See “Flags” below. Some
flags may be provider specific.

OPT_length
Specifies the length of the protocol options associated with the user data trans-
fer. Supplying protocol options with the primitive is optional. If the transaction
user does not provide protocol options with the primitive, the OPT_length and
OPT_offset fields must be set to zero (0) by the transaction user. The format
of the protocol options are provider specific.

OPT_offset
Specifies the offset from the beginning of the M_PROTO message block where
the protocol options begin. Alignment of the protocol options in the M_PROTO
message block is not guaranteed. However, the alignment of the protocol options
in the M_PROTO message block are the same as was specified by the transport
user.

Flags

TR_MORE_DATA_FLAG
When set, the MORE_DATA_FLAG indicates that the next TR_CONT_REQ primitive
(TIDU) is also part of this TSDU.

TR_RC_FLAG
By setting this flag on the TR_CONT_REQ, the originating transaction user can
request confirmation of receipt of the TR_CONT_REQ primitive.

56 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

TR_SEQ_ASSURANCE
By setting this flag on the primitive, the originating transaction user can indi-
cate that “sequence assured” service is requested from the underlying network
service provider.

TR_NO_PERMISSION
By setting this flag on the TR_CONT_REQ, the originating transaction user can
either deny (set) or grant (clear) permission for the transaction peer to termi-
nate the transaction association upon receipt of the corresponding TR_CONT_IND
primitive. This flag is only used for transaction providers that support this fea-
ture (see [Addendum for ANSI Conformance], page 85).

Valid State

This primitive is valid in transaction state TRS_DATA_XFER. This primitive is only valid in
connection-oriented mode.

New State

The new state for the transaction remains unchanged.

Acknowledgements

This primitive does not require acknowledgement. If a non-fatal error occurs, it is the
responsibility of the peer ASE to report it within the upper-layer protocol or using the
TR_ABORT_IND primitive (see Section 4.2.3.4 [Transaction Abort Indication], page 66). Fa-
tal errors are indicated with the M_ERROR message type which results in the failure of all
operating system service routines on the stream. The allowable fatal errors are as follows:

[EPROTO] This error indicates on of the following unrecoverable protocol conditions:
— The transaction interface was found to be in an incorrect state.
— The amount of transaction user data associated with the primitive is

outside the range supported by the transaction provider (as specified
by the TIDU_size parameter of the TR_INFO_ACK primitive described in
Section 4.1.1.2 [Transaction Information Acknowledgement], page 24.)

— The options requested are either not support by the transaction provider
or their use is not specified with the TR_BEGIN_REQ primitive.

— The M_PROTO message block was not follows by one or more M_DATA message
blocks.

— The amount of transaction user data associated with the current NSDU
is outside the range supported by the transaction provider (as specified
by the TSDU_size parameter in the TR_INFO_ACK primitive described in
Section 4.1.1.2 [Transaction Information Acknowledgement], page 24.)

— The TR_RC_FLAG and TR_MORE_DATA_FLAG were both set in the primitive,
or the flags field contained an unknown value.

NOTE: If the interface is in the TRS_IDLE state when the provider receives the TR_CONT_REQ
primitive, then the transaction provider should discard the request without generating a
fatal error.

2008-10-31 57

Chapter 4: TRI Primitives

4.2.2.2 Transaction Continue Indication

TR_CONT_IND

This transaction provider originated primitive indicates to the transaction user that
this message contains transaction user data. As in the TR_CONT_REQ primitive (see
Section 4.2.2.1 [Transaction Continue Request], page 55), the TSDU can eb segmented
into more than one TIDU. The TIDUs are assocated with the TSDU by using the
TR_MORE_DATA_FLAG. The TR_RC_FLAG and TR_NO_PERMISSION flags are allowed to be
set only on the last TIDU. Use of the M_PROTO message blocks is optional (see guidelines
describe in see Section 4.2.2.1 [Transaction Continue Request], page 55).

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA
message blocks containing user data for the association, structured as follows:

typedef struct TR_cont_ind {
ulong PRIM_type; /* Always TR_CONT_IND */
ulong TRANS_id; /* Transaction id */
ulong ASSOC_flags; /* Association flags */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_cont_ind_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type: always TR_CONT_IND.

TRANS_id Indicates the transaction identifier previously indicated by the transport
provider to uniquely identify the transaction. The transaction identifier must
be indicated by the transaction provider. The transaction identifier must be
the same as the transaction identifier that was indicated in the corresponding
TR_BEGIN_IND or TR_BEGIN_CON.

ASSOC_flags
Specifies the option flags provided with the primitive. See “Flags” below. Some
flags may be provider specific.

OPT_length
Indicates the length of the protocol options associated with the user data trans-
fer. Protocol options are only indicated by the transaction provider when they
were supplied by the underlying protocol. If the transport provider does not
indicate protocol options, the OPT_length and OPT_offset fields must be set
to zero (0). The format of the protocol options are provider specific.

OPT_offset
Indicates the offset from the beginning of the M_PROTO message block where the
protocol options begin.

58 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

Flags

TR_MORE_DATA_FLAG
When set, indicates taht the next TR_CONT_IND message (TIDU) is part of this
TSDU.

TR_RC_FLAG
The value of the flag may indicate either that confirmation is requested or that
it is not requested. The flag is allowed to be set only if use of the Receipt Con-
firmation was agreed between both the transaction users and the transaction
provider during transaction association establishment. The value of this flag is
always identical to that supplied in the corresponding TR_CONT_REQ.

TR_NO_PERMISSION
The value of this flag may indicate either that the transaction peer gives per-
mission (clear) to end the transaction association or does not give permission
(set) to end the transaction association. This flag is only valid for transaction
providers that support it (see [Addendum for ANSI Conformance], page 85).

Valid State

This primitive is valid in transaction state TRS_DATA_XFER. This primitive is only valid in
connection-oriented mode.

New State

The new state for the transaction is unchanged.

Rules

— When the TR_NO_PERMISSION flag is set, the transaction user must not issue a TR_END_
REQ primitive in response to this indication.

2008-10-31 59

Chapter 4: TRI Primitives

4.2.3 Transaction Termination

4.2.3.1 Transaction End Request

TR_END_REQ

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA
message blocks containing user data for the association, structured as follows:

typedef struct TR_end_req {
ulong PRIM_type; /* Always TR_END_REQ */
ulong TRANS_id; /* Transaction id */
ulong TERM_scenario; /* Termination scenario */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_end_req_t;

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type: always TR_END_REQ.

TRANS_id Specifies the transaction identifier previously indicated by the transport
provider to uniquely identify the transaction. The transaction identifier must
be specified by the transaction user unless there is only one transaction
supported by the stream in transaction state TRS_DATA_XFER. When specified,
the transaction identifier must be the same as the transaction identifier that
was indicated by the transaction provider in the corresponding TR_BEGIN_IND
or TR_BEGIN_CON.

TERM_scenario
Specifies the termination scenario. Termination scenarios are provider specific.

OPT_length
Specifies the length of the protocol options associated with the transaction asso-
ciation termination. Supplying protocol options with the primitive is optional.
If the transaction user does not provide protocol options with the primitive, the
OPT_length and OPT_offset fields must be set to zero (0) by the transaction
user. The format of the protocol options are provider specific.

OPT_offset
Specifies the offset from the beginning of the M_PROTO message block where
the protocol options begin. Alignment of the protocol options in the M_PROTO
message block is not guaranteed. However, the alignment of the protocol options
in the M_PROTO message block are the same as was specified by the transport
user.

60 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

Valid State

This primitive is valid in transaction state TRS_DATA_XFER. This primitive is only valid in
connection-oriented mode.

New State

The new state of the transaction is TRS_IDLE.

Rules

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements
upon receipt of the primitive:
— Successful: Correct acknowledgement of the primitive is indicated with the TR_OK_ACK

primitive described in Section 4.1.4.1 [Transaction Successful Receipt Acknowledge-
ment], page 41.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive de-
scribed in Section 4.1.4.2 [Transaction Error Acknowledgement], page 42. The allowable
errors are as follows:

TROUTSTATE
The primitive would place the transaction interface out of state for the
indicated transaction.

TRSYSERR A system error occurred and the UNIX System error is indicated in the
primitive.

2008-10-31 61

Chapter 4: TRI Primitives

4.2.3.2 Transaction End Indication

TR_END_IND

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA
message blocks containing user data for the association, structured as follows:

typedef struct TR_end_ind {
ulong PRIM_type; /* Always TR_END_IND */
ulong CORR_id; /* Correlation id */
ulong TRANS_id; /* Transaction id */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_end_ind_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type: always TR_END_IND.

CORR_id Indicates the correlation identifier previously specified by the transport user to
uniquely identify an outstanding transaction request that has not yet received
transaction confirmation. For all other cases, this field must be set to zero (0).

TRANS_id Indicates the transaction identifier previously indicated by the transport
provider to uniquely identify the transaction. The transaction identifier must
be indicated by the transaction provider. The transaction identifier must be
the same as the transaction identifier that was indicated in the corresponding
TR_BEGIN_IND or TR_BEGIN_CON (if any).

OPT_length
Indicates the length of the protocol options associated with the transaction
association termination. Protocol options are only indicated by the transaction
provider when they were supplied by the underlying protocol. If the transport
provider does not indicate protocol options, the OPT_length and OPT_offset
fields must be set to zero (0). The format of the protocol options are provider
specific.

OPT_offset
Indicates the offset from the beginning of the M_PROTO message block where the
protocol options begin.

Valid State

This primitive is valid in transaction states TRS_WCON_CREQ or TRS_DATA_XFER. This prim-
itive is only valid in connection-oriented mode.

62 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

New State

The new state for the transaction is TRS_IDLE.

Rules

The following rules apply to the issuance of this primitive:
— This primitive may be issued in response to a TR_BEGIN_REQ primitive. When issued

in this case, the transaction provider is indicating that a transaction is both confirmed
and terminated.

— This primitive may be issued after receiving a TR_BEGIN_RES or issuing a TR_BEGIN_
CON, but before receiving a TR_END_REQ or TR_ABORT_REQ primitive, or issuing a TR_
UABORT_IND or TR_PABORT_IND primitive.

— When issued, this primitive indicates the tear-down of the transaction association cor-
responding to the TRANS_id indicated in the primitive.

2008-10-31 63

Chapter 4: TRI Primitives

4.2.3.3 Transaction User Abort Request

TR_ABORT_REQ

Format

The format of the message is one M_PROTO message block structured as follows:
typedef struct TR_abort_req {

ulong PRIM_type; /* Always TR_ABORT_REQ */
ulong TRANS_id; /* Transaction id */
ulong ABORT_cause; /* Cause of the abort */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_abort_req_t;

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type: always TR_ABORT_REQ.

TRANS_id Specifies the transaction identifier previously indicated by the transport
provider to uniquely identify the association. The transaction identifier must
be the same as the transaction identifier that was indicated by the transaction
provider in the corresponding TR_BEGIN_IND or TR_BEGIN_CON primitive.

ABORT_cause
Specifies the (user) cause for the abort. Abort causes are provider specific.

OPT_length
Specifies the length of the protocol options associated with the abort. Supplying
protocol options with the primitive is optional. If the transaction user does not
provide protocol options with the primitive, the OPT_length and OPT_offset
fields must be set to zero (0) by the transaction user. The format of the protocol
options are provider specific.

OPT_offset
Specifies the offset from the beginning of the M_PROTO message block where
the protocol options begin. Alignment of the protocol options in the M_PROTO
message block is not guaranteed. However, the alignment of the protocol options
in the M_PROTO message block are the same as was specified by the transport
user.

Modes

This primitive is only valid in connection-oriented mode.

Originator

Transaction user.

64 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

Valid State

This primitive is valid in any connection oriented transaction state other than TRS_IDLE.

New State

The new state for the transaction is TRS_IDLE.

Acknowledgements

This primitive requires the TR provider to generate one of the following acknowledgements
upon receipt of the primitive:
— Successful: Correct acknowledgement of the primitive is indicated with the TR_OK_ACK

primitive described in Section 4.1.4.1 [Transaction Successful Receipt Acknowledge-
ment], page 41.

— Non-fatal errors: These errors will be indicated with the TR_ERROR_ACK primitive de-
scribed in Section 4.1.4.2 [Transaction Error Acknowledgement], page 42. The allowable
errors are as follows:

TRBADDATA
The amount of user data specified was invalid.

TRBADID The transaction identifier specified in the primitive was incorrect or invalid.

TRNOTSUPPORT
This primitive is not supported by the transaction provider.

TROUTSTATE
The primitive would place the transaction interface out of state for the
indicated transaction.

TRSYSERR A system error occurred and the UNIX System error is indicated in the
primitive.

The transport provider should not generate an error if it receives this primitive in the
TRS_IDLE state for the transaction.

2008-10-31 65

Chapter 4: TRI Primitives

4.2.3.4 Transaction Abort Indication

TR_ABORT_IND

This primitive indicates to the user that either a request for association has been denied or
an existing association has been aborted.

Format

The format of the message is one M_PROTO message block structured as follows:
typedef struct TR_abort_ind {

ulong PRIM_type; /* Always TR_ABORT_IND */
ulong CORR_id; /* Correlation id */
ulong TRANS_id; /* Transaction id */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */
ulong ABORT_cause; /* Cause of the abort */
ulong ORIGINATOR; /* Originator P or U */

} TR_abort_ind_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type: always TR_ABORT_IND.

CORR_id Indicates the correlation identifier previously specified by the transport user to
uniquely identify an outstanding transaction request that has not yet received
transaction confirmation. For all other cases, this field must be set to zero (0).

TRANS_id Indicates the transaction identifier previously indicated by the transport
provider to uniquely identify the transaction. The transaction identifier must
be indicated by the transaction provider. The transaction identifier must be
the same as the transaction identifier that was indicated in the corresponding
TR_BEGIN_IND or TR_BEGIN_CON primitive (if any).

OPT_length
Indicates the length of the protocol options associated with the transaction
association termination. Protocol options are only indicated by the transaction
provider when they were supplied by the underlying protocol. If the transport
provider does not indicate protocol options, the OPT_length and OPT_offset
fields must be set to zero (0). The format of the protocol options are provider
specific.

OPT_offset
Indicates the offset from the beginning of the M_PROTO message block where the
protocol options begin.

ABORT_cause
Indicates the cause of the abort. Abort causes are provider specific.

66 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

ORIGINATOR
Indicates the originator of the abort. This field can have values TR_USER or
TR_PROVIDER or TR_UNSPECIFIED.

Modes

This primitive is only valid in connection-oriented mode.

Originator

Transaction provider.

Valid State

This primitive is valid in any connection oriented transaction state other than TRS_IDLE.

New State

The new state for the transaction is TRS_IDLE.

2008-10-31 67

Chapter 4: TRI Primitives

4.3 Connectionless Mode Primitives

4.3.1 Transaction Phase

4.3.1.1 Transaction Unidirectional Request

TR_UNI_REQ

This primitive requests that the TR provider send the specified unidirectional (connection-
less) message to the specified destination with the specified options and optional originating
protocol address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA
message blocks containing user data for the association, structured as follows:

typedef struct TR_uni_req {
ulong PRIM_type; /* Always TR_UNI_REQ */
ulong DEST_length; /* Destination address length */
ulong DEST_offset; /* Destination address offset */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */
ulong ORIG_length; /* Originating address length */
ulong ORIG_offset; /* Originating address offset */

} TR_uni_req_t;

Parameters

The primitive has the following arguments:

PRIM_type
Specifies the primitive type: always TR_UNI_REQ.

DEST_length
Specifies the length of the protocol address to which to send the unidirectional
invocation.

DEST_offset
Specifies the offset from the beginning of the M_PROTO message block where the
protocol address begins.

ORIG_length
Specifies the length of the protocol address from which to send the unidirectional
invocation. Specification of the originating protocol address (ORIG_length and
ORIG_offset) is optional. When not specified the TR provider will implicitly
associate the local protocol address used in the bind service (see Section 4.1.2.1
[Transaction Bind Request], page 26) with the primitive as the originating pro-
tocol address.

68 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

ORIG_offset
Specifies the offset from the beginning of the M_PROTO message block where the
protocol address begins.

OPT_length
Specifies the length of the protocol options associated with the unidirectional
invocation.

OPT_offset
Specifies the offset from the beginning of the M_PROTO message block where the
protocol options begin.

Valid State

This primitive is valid in state TRS_IDLE. This primitive is only valid in connectionless
mode.

New State

The new state remains unchanged.

Rules

Acknowledgements

This primitive does not require an acknowledgement.1 If a non-fatal error occurs, it is the
responsibility of the TR provider to report it with the TR_NOTICE_IND indication. Fatal er-
rors are indicated with the M_ERROR message type which results in the failure of all operating
system service routines on the stream. The allowable fatal errors are as follows:

[EPROTO] This error indicates one of the following unrecoverable protocol conditions:
— The TR service interface was found to be in an incorrect state.
— The amount of TR user data associated with the primitive defines an

APDU (ACSE Protocol Data Unit) larger than that allowed by the TR
provider.

1 This is a TCAP operations class 4 or a ROSE operations class 5 transaction that requires neither a positive
or negative acknowledgement.

2008-10-31 69

Chapter 4: TRI Primitives

4.3.1.2 Transaction Unidirectional Indication

TR_UNI_IND

This primitive indicates to the TR user that a unidirectional invocation has been received
from the specified source address.

Format

The format of the message is one M_PROTO message block, followed by zero or more M_DATA
message blocks containing user data for the association, where each M_DATA message block
contains at least one byte of data, structured as follows:

typedef struct TR_uni_ind {
ulong PRIM_type; /* Always TR_UNI_REQ */
ulong DEST_length; /* Destination address length */
ulong DEST_offset; /* Destination address offset */
ulong ORIG_length; /* Originating address length */
ulong ORIG_offset; /* Originating address offset */
ulong OPT_length; /* Options structure length */
ulong OPT_offset; /* Options structure offset */

} TR_uni_ind_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type: always TR_UNI_IND.

DEST_length
Indicates the length of the protocol address to which the message was sent. This
is not necessarily the same as the local protocol address to which the stream
is bound. The address provided here may contain additional information for
some protocols. So, for example, under TCAP, although the stream is bound
to an SCCP subsystem, this protocol address may contain the SCCP Global
Title.

DEST_offset
Indicates the offset from the start of the M_PROTO message block where the
protocol address begins.

ORIG_length
Indicates the length of the protocol address from which the message was sent.

ORIG_offset
Indicates the offset from the start of the M_PROTO message block where the
protocol address begins.

OPT_length
Indicates the length of the protocol options that were associated with the re-
ceived message.

70 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Primitives

OPT_offset
Indicates the offset from the start of the M_PROTO message block where the
protocol options begin.

Valid State

This primitive is only issued in state TRS_IDLE. This primitive is only valid in connectionless
mode.

New State

The new state remains unchanged.

Rules

The proper alignment of the destination address, originating address and protocol options
in the M_PROTO message block is not guaranteed.

2008-10-31 71

Chapter 4: TRI Primitives

4.3.1.3 Transaction Notice Indication

TR_NOTICE_IND

This primtiive indicates to the transaction user that a component of a transaction produced
an error.

Format

The format of the message is one M_PCPROTO message block, followed by zero or more M_DATA
message blocks containing user data for the association, structured as follows:

typedef struct TR_notice_ind {
ulong PRIM_type; /* Always TR_NOTICE_IND */
ulong CORR_id; /* Correlation id */
ulong TRANS_id; /* Transaction id */
ulong REPORT_cause; /* SCCP return cause */

} TR_notice_ind_t;

Parameters

The primitive has the following arguments:

PRIM_type
Indicates the primitive type. Always TR_NOTICE_IND.

CORR_id Indicates the transaction user assigned transaction identifier.

TRANS_id Indicates the transaction provider assigned transaction identifier.

REPORT_cause
Indicates the defined protocol dependent error code.

Modes

This primitive is only issued in Operations Classes that provide negative acknowledgements.

Originator

This primitive is originated by the TR provider.

Valid State

This primitive is only valid in connectionless mode.

New State

The new state remains unchanged.

Rules

72 Version 0.9a Rel. 8

Transaction Interface (TRI) Diagnostics Requirements

5 Diagnostics Requirements

There are two error handling facilities available to the TR user: one to handle non-fatal
errors and one to handle fatal errors.

5.1 Non-Fatal Errors

The non-fatal errors are those that a TR user can correct, and are reported in the form
of an error acknowledgement to the appropriate primitive in error. Only those primitive
which require acknowledgements may generate a non-fatal error acknowledgement. These
acknowledgements always report syntactical error in the specified primitive when the TR
provider receives the primitive. The primitive descriptions1 define those primitive and rules
regarding acknowledgement for each primitive. These errors are reported to the TR user
with the TR_ERROR_ACK primitive, (see Section 4.1.4.2 [Transaction Error Acknowledge-
ment], page 42), and give the TR user the option of reissuing the TR service primitive that
cause the error. The TR_ERROR_ACK primitive also indicates to the TR user that no action
was taken by the TR provider upon receipt of the primitive which cause the error.
These errors do not change the state of the TR service interface as seen by the TR user.
The state of the interface after the issuance of a TR_ERROR_ACK primitive should be the
same as it was before the TR provider receive the interface primitive that was in error.
The allowable errors that can be reported on the receipt of a TR initiated primitive are
presented in the description of the appropriate primitives, see Chapter 4 [TRI Primitives],
page 21.

5.2 Fatal Errors

Fatal errors are those that cannot be corrected by the TR user, or those errors that result
in an uncorrectable error in the interface or in the TR provider.
The most common of these errors are listed under the appropriate primitives (see Chapter 4
[TRI Primitives], page 21). The transaction provider should issue fatal errors only if the
transaction user cannot correct the condition that caused the error or if the transaction
provider has no means of reporting a transaction user correctable error. If the transaction
provider detects an uncorrectable non-protocol error internal to the transaction provider,
the provider should issue a fatal error to the user.
Fatal errors are indicated to the transaction user with the STREAMS message type M_ERROR
with the UNIX System error [EPROTO]. This is the only type of error that the transaction
provider should use to indicate a fatal protocol error to the transaction user. The message
M_ERROR will result in the failure of all the operating system service routines on the stream.
The only way for the user to recover from a fatal error is to ensure that all processes close
the file associated with the stream. Then the user may reopen the file associated with the
stream.

1 See Chapter 4 [TRI Primitives], page 21.

2008-10-31 73

Transaction Interface (TRI) Transaction Service Interface Sequence of Primitives

6 Transaction Service Interface Sequence of
Primitives

The allowable sequence of primitives are described in the state diagrams and tables for
both the connection-oriented and connectionless mode mode transaction services described
in Appendix B [State/Event Tables], page 99.

6.1 Rules for State Maintenance

6.1.1 General Rules for State Maintenace

The following are rules regarding the maintenance of the state of the interface:
• It is the responsibility of the transaction provider to keep record of the state of the

interface as viewed by the transaction user.
• The transaction provider must never issue a primitive that places the interface out of

state.
• The uninitialized state of a stream is the initial and final state, and it must be

bound (see Section 4.1.2.1 [Transaction Bind Request], page 26) before the transac-
tion provider may view it as an active stream.

• If the transaction provider sends a M_ERROR upstream, it should also drop any further
messages received on its write side of the stream.

6.1.2 Connection-Oriented Transaction Service Rules for State
Maintenace

The following rules apply only to the connection-oriented mode transaction services:
• A transaction association end procedure can be initiated at any time during the trans-

action association establishment or user data transfer phases.
• The state tables for the connection-oriented mode transaction service providers in-

clude the management of the correlation and transaction identifiers when a transaction
provider sends multiple TR_BEGIN_IND indications or accepts multiple TR_BEGIN_REQ
requests without waiting for the response or confirmation to the previous indication or
request. It is the responsibility of the transaction provider not to change state until all
the indications or requests have been responded to or confirmed, therefore the provider
should remain in the TRS_WRES_CIND or TRS_WACK_CREQ state while there are any out-
standing begin indications or requests pending response or confirmation. The provider
should change state appropriately when all the begin indications or requests have been
responded to or confirmed.

• The only time the state of the transaction service interface of a stream may be trans-
ferred to another stream is when it is indicated in a TR_BEGIN_RES primitive. The
following rules then apply to the cooperating streams:
— The stream that is to accept the current state of the interface must be bound to

an appropriate protocol address and must be in the idle state.1

1 This is not really true for either TRI or TPI. The accepting stream can be bound or unbound, and for some
protocols may be bound to an address different or the same as the stream upon which the begin indication
was issued.

2008-10-31 75

Chapter 6: Transaction Service Interface Sequence of Primitives

— The user transferring the current state of a stream must have the correct permis-
sions for the use of the protocol address bound to the accepting stream.

— The stream which transfers the state of the transaction interface must be placed
into an appropriate state after the completion of the transfer.

6.2 Rules for Precedence of Primitives on a Stream

6.2.1 General Rules for Precedence of Primitives

The following rules apply to the precedence of transaction interface primitives with respect
to their position on a stream:2

• The transaction provider has responsibility for determining precedence of its stream
write queue, as per the rules defined in Appendix C [Primitive Precedence Tables],
page 101. The appendix specifies the rules for precedence for both the connection-
oriented and connectionless transaction services.

• The transaction user has the responsibility for determining precedence on its stream
read queue, as per the rules defined in Appendix C [Primitive Precedence Tables],
page 101.

• All primitives on the stream are assumed to be placed on the queue in the correct
sequence as defined above.

6.2.2 Connection-Oriented Transaction Service Rules for
Precedence of Primitives

The following rules apply only to the connection-oriented transaction services:

• There is no guarantee of delivery of user data once a TR_ABORT_REQ primitive has been
issued.

6.3 Rules for Flushing Queues

6.3.1 General Rules for Flushing Queues

The following rules pertain to flushing of stream queues: (No other flushes should be needed
to keep the queues in the proper condition.)

• The transaction providers must be aware that they will receive M_FLUSH message from
upstream. These flush requests are issued to ensure that the providers receive certain
messages and primitives. It is the responsibility of the providers to act appropriately
as deemed necessary by the providers.

• The transaction provider must send up a M_FLUSH message to flush both the read and
write queues after receiving a successful TR_UNBIND_REQ message and prior to issuing
the TR_OK_ACK primitive.

2 The stream queue which contains a transaction user initiated primitives is referred to as the stream write
queue. The stream queue which contains the transaction provider initiated primitives is referred to as the
stream read queue.

76 Version 0.9a Rel. 8

Transaction Interface (TRI) Transaction Service Interface Sequence of Primitives

6.3.2 Connection-Oriented Transaction Service Rules for Flushing
Queues

The following rules apply only to the connection-oriented transaction services:
• If the interface is in the TRS_DATA_XFER, TRS_WIND_ORDREL or TRS_WACK_ORDREL state,

the transaction provider must send up a M_FLUSH message to flush both the read and
write queues before sending up a TR_ABORT_IND.

• If the interface is in the TRS_DATA_XFER, TRS_WIND_ORDREL or TRS_WACK_ORDREL state,
the transaction provider must send up a M_FLUSH message to flush both the read and
write queues after receiving a successful TR_ABORT_REQ primitive and before issuing the
TR_OK_ACK primitive.

2008-10-31 77

Transaction Interface (TRI) Addendum for ITU-T Conformance

Addendum for ITU-T Conformance

This section describes the formats and rules that are specified to ITU-T Q.771 operation.
The addendum must be used along with the generic TRI as defined in the main document
when implementing a TR provider that will be configured with the ITU-T Q.771 (TCAP)
Transaction Sub-Layer.

Quality of Service: Model and Description

The “Quality of Service” characteristics apply to both connection-oriented and connection-
less transaction services.

QoS Overview

QoS (Quality of Service) is described in terms of QoS parameters. There are two types of
QoS parameters:
1. Those that are “negotiated” on a per-association basis during transaction association

establishment.1

2. Those that are not “negotiated” and their values are selected or determined by local
management methods.

TRI Primitives: Rules for ITU-T Q.771 Conformance

The following rules apply to the TRI primitives for ITU-T Q.771 (TCAP) compatibility:

Addressing

TCAP uses SCCP formatted addresses instead of ISO Presentation Layer addresses.

Address Format

The address format for a TCAP address is as follows:

Options

TCAP Level Options

Application Context Name

User Information

SCCP Level Options

SCCP Quality of Service Options

The TCAP interface uses protocol level T_SS7_SCCP for options at the SCCP level. SCCP
QoS parameters are communicated to the underlying transaction provider using the option
name T_SCCP_QOS. There are three QoS structure that can be used in this fashion as follows:

1 The connectionless transaction services do not support end-to-end QoS parameter negotiation.

2008-10-31 79

Addendum for ITU-T Conformance

Option Name Option Type Meaning

T_SCCP_QOS N_qos_sel_sccp_t For use with TR_UNI_REQ,
TR_BEGIN_REQ, TR_BEGIN_RES,
TR_CONT_REQ, TR_END_REQ,
TR_ABORT_REQ.

T_SCCP_QOS N_qos_opt_sel_sccp_t For use with TR_BEGIN_REQ,
TR_BEGIN_RES.

T_SCCP_QOS N_qos_range_sccp_t For use with TR_INFO_ACK.

Quality of service struct N qos sel sccp t has the following fields:

n qos type
This is the NPI Quality of Service structure type and is always set to N_QOS_
SEL_SCCP, N_QOS_OPT_SEL_SCCP, or N_QOS_RANGE_SCCP.

protocol class
This is the protocol class. The protocol class field can be one of the following:
• N_QOS_PCLASS_0 (SCCP connectionless protocol class 0),
• N_QOS_PCLASS_1 (for SCCP connectionless protocol class 1),
• N_QOS_PCLASS_2 (for SCCP connection-oriented protocol class 2),
• N_QOS_PCLASS_3 (for SCCP connection-oriented protocol class 3) or
• QOS_UNKNOWN.

N_QOS_PCLASS_2 and N_QOS_PCLASS_3 are not applicable to TCAP.

option flags
If the options flags field has bit N_QOS_OPT_RETERR set then the SCCP will
return the PDU on error.

importance
This is the importance of the message for consideration for SCCP flow control.
This value is not normally set by the user. It can be any integer number from
0 to 7, or QOS_UNKNOWN.

sequence selection
This affects the SLS (Signalling Link Selection) value that will be used for pro-
tocol classes N_QOS_PCLASS_0 and N_QOS_PCLASS_1. This value is not normally
set by the user and can be an integer value or QOS_UNKNOWN.

message priority
This affects the MP (Message Priority) value that will be used for specific
messages in all protocol classes. This value is not normally set by the use and
can be any integer value from 0 to 3 or the value QOS_UNKNOWN.

Supported Services

Common Transaction Services

Information Service

TR_INFO_REQ

80 Version 0.9a Rel. 8

Transaction Interface (TRI) Addendum for ITU-T Conformance

TR_INFO_ACK

Parameters

The following discusses the values which may be returned in a TR_INFO_ACK primitive in
response to a TR_INFO_REQ primitive.

ASDU_size
Depending on the underlying SCCP layer, TCAP can have effectively no limit
to the amount of user data that can be sent in a particular transaction. Protocol
variants or versions of SCCP that support XUDT and segmentation-reassembly
of protocol class 0 or 1 messages will set ASDU_size to T_INFINITE (‘-1’).
For protocol variants of SCCP or other underlying network providers that do
not support segmentation/reassembly of long messages, the provider wills et
ASDU_size to the maximum size (number of octets) of user data that can be
guaranteed transferred when associated with a single TR_BEGIN_RES or TR_
CONT_REQ message.

EASDU_size
TCAP has no expedited data service and the value of EASDU_size is set to
T_UNKNOWN (‘-2’).

CDATA_size
TCAP can send user data with the initial Begin (Query) or first Continue
(Conversation) package and can also send Application Context and User In-
formation in either package. These messages correspond to TR-BEGIN and
the first TR-CONTINUE after receiving a TR-BEGIN and they correspond
to TR_BEGIN_REQ and TR_BEGIN_RES. Because the underlying SCCP connec-
tionless network may support unlimited size NSDUs, this value may be set to
T_INFINITE (‘-1’) or may be set to the maximum amount of user data (includ-
ing Application Context, User Information and user data) that can be sent or
received in either package. This informs the user as to what size to make data
buffers associated with transaction begin indications and confirmations (TR_
BEGIN_IND, TR_BEGIN_CON) and how much data can be sent with transaction
begin requests and responses (TR_BEGIN_REQ, TR_BEGIN_RES).

DDATA_size
TCAP can send transaction end data (user data) with the final End (Response)
package. These messages correspond to the TR-END primitive and the TR_END_
REQ or TR_END_IND. Again, because the underlying SCCP connectionless net-
work may support unlimited size NSDUs, this value may be set to T_INFINITE
(‘-1’) or may be set to the maximum amount of transaction end data that can
be sent or received in the End (Response) package. This informs the user as
to what size to make data buffers associated with transaction end indications
(TR_END_IND) and how much data can be sent with transaction end requests
(TR_END_REQ).

2008-10-31 81

Addendum for ITU-T Conformance

ADDR_size
This is the maximum TCAP address size that can be communicated across the
interface. This address size is the maximum size of the defined SCCP address
structure (‘sizeof sccp_addr_t’) that also will include address digits up to a
maximum of SCCP_MAX_ADDR_LENGTH octets of digits. This informs the user
as to what size it should reserver for control buffers so as to receive control
information without buffer truncation.

OPT_size This is the maximum size of the options field used in any TRI message (see
Chapter 4 [TRI Primitives], page 21) and is the sum of the maximum option
sizes of one of each of the options that can occur together. This informs the
user as to what size it should reserve for control buffers to ensure that received
control messages that include options cna be contained within the buffer without
truncation.

TIDU_size
Although a TCAP provider can support unlimited ASDU size, it cannot nor-
mally support unlimited TIDU size. This is because the underlying SCCP
NSDU may be limited in size. The TCAP provider is not responsible for seg-
menting user data sequences offered to the provider from the user in an M_DATA
message chain. This is the maximum size of the TIDU which corresponds to the
maximum size of the underlying NSDU. Because the underlying SCCP provider
may have no limit on the NSDU size (i.e, it supports segmentation of connec-
tionless NSDUs) this may be more in the manner of a optimal recommendation
to the user rather than an absolute maximum. Because of this, a given TCAP
provider might not reject TIDUs which are larger than this value.

SERV_type
There are two service types supported by a transaction provider: connection-
oriented transaction service (COTS) and connectionless transaction service
(CLTS). CLTS is a connectionless unidirectional transaction service with no
error notification. COTS is a connection-oriented transaction services with or
without error notification. The value reflected here is dependent on the setting
of option T_ACSE_PCLASS or T_TCAP_OCLASS.

CURRENT_state
Provides the current state of the transaction interface. TCAP providers use the
same states as other TRI providers.

PROVIDER_flag
Unused.

TRI_version
Set to the current version.

Address service

TR_ADDR_REQ

82 Version 0.9a Rel. 8

Transaction Interface (TRI) Addendum for ITU-T Conformance

TR_ADDR_ACK

Bind Service

TR_BIND_REQ

TR_BIND_ACK

Options Management Service

TR_OPTMGMT_REQ

TR_OPTMGMT_ACK

Connection-Oriented Transaction Services

Transaction Begin

TR_BEGIN_REQ

TR_BEGIN_IND

TR_BEGIN_RES

TR_BEGIN_CON

Transaction Continue

TR_CONT_REQ

TR_CONT_IND

Transaction End

TR_ABORT_REQ

TR_ABORT_IND

TR_END_REQ

TR_END_IND

Connectionless Transaction Services

TR_UNI_REQ

TR_UNI_IND

2008-10-31 83

Addendum for ITU-T Conformance

TR_NOTICE_IND

84 Version 0.9a Rel. 8

Transaction Interface (TRI) Addendum for ANSI Conformance

Addendum for ANSI Conformance

This section describes the formats and rules that are specified to ANSI T1.114 operation.
The addendum must be used along with the generic TRI as defined in the main document
when implementing a TR provider that will be configured with the ANSI T1.114 (TCAP)
Transaction Sub-Layer.1

Quality of Service: Model and Description

The “Quality of Service” characteristics apply to both connection-oriented and connection-
less transaction services.

QoS Overview

QoS (Quality of Service) is described in terms of QoS parameters. There are two types of
QoS parameters:

1. Those that are “negotiated” on a per-association basis during transaction association
establishment.2

2. Those that are not “negotiated” and their values are selected or determined by local
management methods.

TRI Primitives: Rules for ANSI T1.114 Conformance

The following rules apply to the TRI primitives for ANSI T1.114 (TCAP) compatibility:

Addressing

TCAP uses SCCP formatted addresses instead of ISO Presentation Layer addresses.

Address Format

The address format for a TCAP address is as follows:

Options

TCAP Level Options

Application Context Name

User Information

SCCP Level Options

1 It should be noted that ANSI T1.114 does not provide a distinction between the TC and TR Sub-Layers
of TCAP, and do not specify a TC-User or TR-User interface at all. However, as it is still based on ITU-T
Recommendation X.219, there can exist an identifiable TR Sub-Layer interface within ANSI TCAP.

2 The connectionless transaction services do not support end-to-end QoS parameter negotiation.

2008-10-31 85

Addendum for ANSI Conformance

SCCP Quality of Service Options

The TCAP interface uses protocol level T_SS7_SCCP for options at the SCCP level. SCCP
QoS parameters are communicated to the underlying transaction provider using the option
name T_SCCP_QOS. There are three QoS structure that can be used in this fashion as follows:

Option Name Option Type Meaning

T_SCCP_QOS N_qos_sel_sccp_t For use with TR_UNI_REQ,
TR_BEGIN_REQ, TR_BEGIN_RES,
TR_CONT_REQ, TR_END_REQ,
TR_ABORT_REQ.

T_SCCP_QOS N_qos_opt_sel_sccp_t For use with TR_BEGIN_REQ,
TR_BEGIN_RES.

T_SCCP_QOS N_qos_range_sccp_t For use with TR_INFO_ACK.

Quality of service struct N qos sel sccp t has the following fields:

n qos type
This is the NPI Quality of Service structure type and is always set to N_QOS_
SEL_SCCP, N_QOS_OPT_SEL_SCCP, or N_QOS_RANGE_SCCP.

protocol class
This is the protocol class. The protocol class field can be one of the following:
• N_QOS_PCLASS_0 (SCCP connectionless protocol class 0),
• N_QOS_PCLASS_1 (for SCCP connectionless protocol class 1),
• N_QOS_PCLASS_2 (for SCCP connection-oriented protocol class 2),
• N_QOS_PCLASS_3 (for SCCP connection-oriented protocol class 3) or
• QOS_UNKNOWN.

N_QOS_PCLASS_2 and N_QOS_PCLASS_3 are not applicable to TCAP.

option flags
If the options flags field has bit N_QOS_OPT_RETERR set then the SCCP will
return the PDU on error.

importance
This is the importance of the message for consideration for SCCP flow control.
This value is not normally set by the user. It can be any integer number from
0 to 7, or QOS_UNKNOWN.

sequence selection
This affects the SLS (Signalling Link Selection) value that will be used for pro-
tocol classes N_QOS_PCLASS_0 and N_QOS_PCLASS_1. This value is not normally
set by the user and can be an integer value or QOS_UNKNOWN.

message priority
This affects the MP (Message Priority) value that will be used for specific
messages in all protocol classes. This value is not normally set by the use and
can be any integer value from 0 to 3 or the value QOS_UNKNOWN.

86 Version 0.9a Rel. 8

Transaction Interface (TRI) Addendum for ANSI Conformance

Supported Services

Common Transaction Services

Information Service

TR_INFO_REQ

TR_INFO_ACK

Parameters

The following discusses the values which may be returned in a TR_INFO_ACK primitive in
response to a TR_INFO_REQ primitive.

ASDU_size
Depending on the underlying SCCP layer, TCAP can have effectively no limit
to the amount of user data that can be sent in a particular transaction. Protocol
variants or versions of SCCP that support XUDT and segmentation-reassembly
of protocol class 0 or 1 messages will set ASDU_size to T_INFINITE (‘-1’).
For protocol variants of SCCP or other underlying network providers that do
not support segmentation/reassembly of long messages, the provider wills et
ASDU_size to the maximum size (number of octets) of user data that can be
guaranteed transferred when associated with a single TR_BEGIN_RES or TR_
CONT_REQ message.

EASDU_size
TCAP has no expedited data service and the value of EASDU_size is set to
T_UNKNOWN (‘-2’).

CDATA_size
TCAP can send user data with the initial Begin (Query) or first Continue
(Conversation) package and can also send Application Context and User In-
formation in either package. These messages correspond to TR-BEGIN and
the first TR-CONTINUE after receiving a TR-BEGIN and they correspond
to TR_BEGIN_REQ and TR_BEGIN_RES. Because the underlying SCCP connec-
tionless network may support unlimited size NSDUs, this value may be set to
T_INFINITE (‘-1’) or may be set to the maximum amount of user data (includ-
ing Application Context, User Information and user data) that can be sent or
received in either package. This informs the user as to what size to make data
buffers associated with transaction begin indications and confirmations (TR_
BEGIN_IND, TR_BEGIN_CON) and how much data can be sent with transaction
begin requests and responses (TR_BEGIN_REQ, TR_BEGIN_RES).

DDATA_size
TCAP can send transaction end data (user data) with the final End (Response)
package. These messages correspond to the TR-END primitive and the TR_END_
REQ or TR_END_IND. Again, because the underlying SCCP connectionless net-
work may support unlimited size NSDUs, this value may be set to T_INFINITE

2008-10-31 87

Addendum for ANSI Conformance

(‘-1’) or may be set to the maximum amount of transaction end data that can
be sent or received in the End (Response) package. This informs the user as
to what size to make data buffers associated with transaction end indications
(TR_END_IND) and how much data can be sent with transaction end requests
(TR_END_REQ).

ADDR_size
This is the maximum TCAP address size that can be communicated across the
interface. This address size is the maximum size of the defined SCCP address
structure (‘sizeof sccp_addr_t’) that also will include address digits up to a
maximum of SCCP_MAX_ADDR_LENGTH octets of digits. This informs the user
as to what size it should reserver for control buffers so as to receive control
information without buffer truncation.

OPT_size This is the maximum size of the options field used in any TRI message (see
Chapter 4 [TRI Primitives], page 21) and is the sum of the maximum option
sizes of one of each of the options that can occur together. This informs the
user as to what size it should reserve for control buffers to ensure that received
control messages that include options cna be contained within the buffer without
truncation.

TIDU_size
Although a TCAP provider can support unlimited ASDU size, it cannot nor-
mally support unlimited TIDU size. This is because the underlying SCCP
NSDU may be limited in size. The TCAP provider is not responsible for seg-
menting user data sequences offered to the provider from the user in an M_DATA
message chain. This is the maximum size of the TIDU which corresponds to the
maximum size of the underlying NSDU. Because the underlying SCCP provider
may have no limit on the NSDU size (i.e, it supports segmentation of connec-
tionless NSDUs) this may be more in the manner of a optimal recommendation
to the user rather than an absolute maximum. Because of this, a given TCAP
provider might not reject TIDUs which are larger than this value.

SERV_type
There are two service types supported by a transaction provider: connection-
oriented transaction service (COTS) and connectionless transaction service
(CLTS). CLTS is a connectionless unidirectional transaction service with no
error notification. COTS is a connection-oriented transaction services with or
without error notification. The value reflected here is dependent on the setting
of option T_ACSE_PCLASS or T_TCAP_OCLASS.

CURRENT_state
Provides the current state of the transaction interface. TCAP providers use the
same states as other TRI providers.

PROVIDER_flag
Unused.

TRI_version
Set to the current version.

88 Version 0.9a Rel. 8

Transaction Interface (TRI) Addendum for ANSI Conformance

Address service

TR_ADDR_REQ

TR_ADDR_ACK

Bind Service

TR_BIND_REQ

TR_BIND_ACK

Options Management Service

TR_OPTMGMT_REQ

TR_OPTMGMT_ACK

Connection-Oriented Transaction Services

Transaction Begin

TR_BEGIN_REQ

TR_BEGIN_IND

TR_BEGIN_RES

TR_BEGIN_CON

Transaction Continue

TR_CONT_REQ

TR_CONT_IND

Transaction End

TR_ABORT_REQ

TR_ABORT_IND

TR_END_REQ

TR_END_IND

Connectionless Transaction Services

2008-10-31 89

Addendum for ANSI Conformance

TR_UNI_REQ

TR_UNI_IND

TR_NOTICE_IND

90 Version 0.9a Rel. 8

Transaction Interface (TRI) Addendum for ETSI Conformance

Addendum for ETSI Conformance

ETSI Quality of Service Model and Description

QoS Overview

TRI Primitives: Rules for ETSI ETS 300 287 Conformance

Addressing

Address Format

Options

TCAP Level Options

SCCP Level Options

ETSI Supported Services

Common Transaction Services

Information service

TR_INFO_REQ

TR_INFO_ACK

Address service

TR_ADDR_REQ

TR_ADDR_ACK

Bind Service

TR_BIND_REQ

TR_BIND_ACK

Options Management Service

TR_OPTMGMT_REQ

TR_OPTMGMT_ACK

2008-10-31 91

Addendum for ETSI Conformance

Connection-Oriented Transaction Services

Transaction Begin

TR_BEGIN_REQ

TR_BEGIN_IND

TR_BEGIN_RES

TR_BEGIN_CON

Transaction Continue

TR_CONT_REQ

TR_CONT_IND

Transaction End

TR_ABORT_REQ

TR_ABORT_IND

TR_END_REQ

TR_END_IND

Connectionless Transaction Services

TR_UNI_REQ

TR_UNI_IND

TR_NOTICE_IND

92 Version 0.9a Rel. 8

Transaction Interface (TRI) Mapping TRI Primitives

Appendix A Mapping TRI Primitives

2008-10-31 93

Appendix A: Mapping TRI Primitives

A.1 Mapping TRI Primitives to ITU-T Q.771

94 Version 0.9a Rel. 8

Transaction Interface (TRI) Mapping TRI Primitives

A.2 Mapping TRI Primitives to ANSI T1.114

2008-10-31 95

Appendix A: Mapping TRI Primitives

A.3 Mapping TRI Primitives to ITU-T X.219

A.3.1 State Mapping

A.3.2 Primitive Mapping

A.3.2.1 A-ASSOCIATE

Request

Indication

Response

Confirm

A.3.2.2 A-RELEASE

Request

Indication

Response

Confirm

A.3.2.3 A-ABORT

Request

Indication

A.3.2.4 A-P-ABORT

Indication

A.3.2.5 A-UNIT-DATA

Request

Indication

A.3.3 Parameter Mapping

Application Context Name

Calling AP Title

96 Version 0.9a Rel. 8

Transaction Interface (TRI) Mapping TRI Primitives

Calling AE Qualifier

Calling AP Invocation-identifier

Calling AE Invocation-identifier

Called AP Title

Called AE Qualifier

Called AP Invocation-identifier

Called AE Invocation-identifier

Responding AP Title

Responding AE Qualifier

Responding AP Invocation-identifier

Responding AE Invocation-identifier

User Information

Result

Result Source

Diagnostic

Calling Presentation Address

Called Presentation Address

Responding Presentation Address

Presentation Context Definition List

Presentation Context Definition Result List

Default Presentation Context Name

Default Presentation Context Result

Quality of Service

Session Requirements

2008-10-31 97

Appendix A: Mapping TRI Primitives

Initial Sycnhronization Point Serial Number

Initial Assignment of Tokens

Session-connection Identifier

Reason

User Information

Result

Abort Source

User Information

Provider Reason

Authentication

Authentication-mechanism name

Authentication-value

ACSE Requriements

Diagnostic

Application Context Identifier

Application Context Name List

98 Version 0.9a Rel. 8

Transaction Interface (TRI) State/Event Tables

Appendix B State/Event Tables

2008-10-31 99

Transaction Interface (TRI) Primitive Precedence Tables

Appendix C Primitive Precedence Tables

2008-10-31 101

Transaction Interface (TRI) TRI Header File Listing

Appendix D TRI Header File Listing

#define TR_INFO_REQ 0 /* Information request */

#define TR_BIND_REQ 1 /* Bind to network address */

#define TR_UNBIND_REQ 2 /* Unbind from network address */

#define TR_OPTMGMT_REQ 5 /* Options management request */

#define TR_UNI_REQ 6 /* Unidirectional request */

#define TR_BEGIN_REQ 7 /* Begin transaction request */

#define TR_BEGIN_RES 8 /* Begin transaction response-Continue request */

#define TR_CONT_REQ 9 /* Continue transaction request */

#define TR_END_REQ 10 /* End transaction request */

#define TR_ABORT_REQ 11 /* Abort transaction request */

#define TR_ADDR_REQ 25 /* Address request */

#define TR_INFO_ACK 12 /* Information acknowledgement */

#define TR_BIND_ACK 13 /* Bound to network address */

#define TR_OK_ACK 15 /* Success acknowledgement */

#define TR_ERROR_ACK 16 /* Error acknowledgement */

#define TR_OPTMGMT_ACK 17 /* Options management acknowledgement */

#define TR_UNI_IND 18 /* Unidirectional indication */

#define TR_BEGIN_IND 19 /* Begin transaction indication */

#define TR_BEGIN_CON 20 /* Begin transaction confirmation-Continue ind */

#define TR_CONT_IND 21 /* Continue transaction indication */

#define TR_END_IND 22 /* End transaction indication */

#define TR_ABORT_IND 23 /* Abort transaction indication */

#define TR_NOTICE_IND 24 /* Error indication */

#define TR_ADDR_ACK 27 /* Address acknowledgement */

#define TR_QOS_SEL1 0x0501

typedef struct {

t_uscalar_t type; /* Always TR_QOS_SEL1 */

t_uscalar_t flags; /* Return option */

t_uscalar_t seq_ctrl; /* Sequence Control */

t_uscalar_t priority; /* Message priority */

} TR_qos_sel1_t;

/*

* TRPI interface states

*/

#define TRS_UNBND 0 /* TR user not bound to network address */

#define TRS_WACK_BREQ 1 /* Awaiting acknowledgement of N_BIND_REQ */

#define TRS_WACK_UREQ 2 /* Pending acknowledgement for N_UNBIND_REQ */

#define TRS_IDLE 3 /* Idle, no connection */

#define TRS_WACK_OPTREQ 4 /* Pending acknowledgement of N_OPTMGMT_REQ */

#define TRS_WACK_RRES 5 /* Pending acknowledgement of N_RESET_RES */

#define TRS_WCON_CREQ 6 /* Pending confirmation of N_CONN_REQ */

#define TRS_WRES_CIND 7 /* Pending response of N_CONN_REQ */

#define TRS_WACK_CRES 8 /* Pending acknowledgement of N_CONN_RES */

#define TRS_DATA_XFER 9 /* Connection-mode data transfer */

#define TRS_WCON_RREQ 10 /* Pending confirmation of N_RESET_REQ */

#define TRS_WRES_RIND 11 /* Pending response of N_RESET_IND */

#define TRS_WACK_DREQ6 12 /* Waiting ack of N_DISCON_REQ */

#define TRS_WACK_DREQ7 13 /* Waiting ack of N_DISCON_REQ */

#define TRS_WACK_DREQ9 14 /* Waiting ack of N_DISCON_REQ */

#define TRS_WACK_DREQ10 15 /* Waiting ack of N_DISCON_REQ */

2008-10-31 103

Appendix D: TRI Header File Listing

#define TRS_WACK_DREQ11 16 /* Waiting ack of N_DISCON_REQ */

#define TRS_NOSTATES 17

/*

* TR_ERROR_ACK error return code values

*/

#define TRBADADDR 1 /* Incorrect address format/illegal address information */

#define TRBADOPT 2 /* Options in incorrect format or contain illegal

information */

#define TRACCESS 3 /* User did not have proper permissions */

#define TRNOADDR 5 /* TR Provider could not allocate address */

#define TROUTSTATE 6 /* Primitive was issues in wrong sequence */

#define TRBADSEQ 7 /* Sequence number in primitive was incorrect/illegal */

#define TRSYSERR 8 /* UNIX system error occurred */

#define TRBADDATA 10 /* User data spec. outside range supported by TR provider

*/

#define TRBADFLAG 16 /* Flags specified in primitive were illegal/incorrect */

#define TRNOTSUPPORT 18 /* Primitive type not supported by the TR provider */

#define TRBOUND 19 /* Illegal second attempt to bind listener or default

listener */

#define TRBADQOSPARAM 20 /* QOS values specified are outside the range supported

by the TR provider */

#define TRBADQOSTYPE 21 /* QOS structure type specified is not supported by the

TR provider */

#define TRBADTOKEN 22 /* Token used is not associated with an open stream */

#define TRNOPROTOID 23 /* Protocol id could not be allocated */

/*

* TR_ABORT_IND originator

*/

#define TR_PROVIDER 0x0001

#define TR_USER 0x0002

/*

* TR_ABORT abort causes

*/

#define TR_ABTC_APPL_UNREC_MSG_TYPE 0x0100 /* unrecognized message type */

#define TR_ABTC_APPL_UNREC_TRANS_ID 0x0101 /* unrecognized transaction id */

#define TR_ABTC_APPL_BAD_XACT_PORTION 0x0102 /* badly formatted transaction

portion */

#define TR_ABTC_APPL_INCORRECT_XACT_PORTION 0x0103 /* incorrect transaction portion */

#define TR_ABTC_APPL_RESOURCE_LIMITATION 0x0104 /* resource limitation */

#define TR_ABTC_PRIV_UNREC_PKG_TYPE 0x0201 /* unrecognized package type */

#define TR_ABTC_PRIV_INCORRECT_XACT_PORTION 0x0202 /* incorrect transaction portion */

#define TR_ABTC_PRIV_BAD_XACT_PORTION 0x0203 /* badly structured transaction

portion */

#define TR_ABTC_PRIV_UNASSIGNED_RESP_TRANS_ID 0x0204 /* unassigned responding

transaction id */

#define TR_ABTC_PRIV_PERM_TO_RELEASE_PROB 0x0205 /* permission to release problem */

#define TR_ABTC_PRIV_RESOURCE_UNAVAIL 0x0206 /* resource unavailable */

#define TR_ABTC_PRIV_UNREC_DIALOG_PORTION_ID 0x0207 /* unrecognized dialogue portion

id */

#define TR_ABTC_PRIV_BAD_DIALOG_PORTION 0x0208 /* badly structured dialogue

portion */

104 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Header File Listing

#define TR_ABTC_PRIV_MISSING_DIALOG_PORTION 0x0209 /* missing dialogue portion */

#define TR_ABTC_PRIV_INCONSIST_DIALOG_PORTION 0x020a /* inconsistent dialogue portion */

/*

* TR_INFO_REQ. This primitive consists of one M_PCPROTO message block.

*/

typedef struct TR_info_req {

t_uscalar_t PRIM_type; /* Always TR_INFO_REQ */

} TR_info_req_t;

/*

* TR_INFO_ACK. This primitive consists of one M_PCPROTO message block.

*/

typedef struct TR_info_ack {

t_scalar_t PRIM_type; /* Always TR_INFO_ACK */

t_scalar_t TSDU_size; /* maximum TSDU size */

t_scalar_t ETSDU_size; /* maximum ETSDU size */

t_scalar_t CDATA_size; /* connect data size */

t_scalar_t DDATA_size; /* discon data size */

t_scalar_t ADDR_size; /* address size */

t_scalar_t OPT_size; /* options size */

t_scalar_t TIDU_size; /* transaction i/f data unit size */

t_scalar_t SERV_type; /* service type */

t_scalar_t CURRENT_state; /* current state */

t_scalar_t PROVIDER_flag; /* type of TR provider */

t_scalar_t TRPI_version; /* version # of trpi that is supported */

} TR_info_ack_t;

/*

* TR_BIND_REQ. This primitive consists of one M_PROTO message block.

*/

typedef struct TR_bind_req {

t_uscalar_t PRIM_type; /* Always TR_BIND_REQ */

t_uscalar_t ADDR_length; /* address length */

t_uscalar_t ADDR_offset; /* address offset */

t_uscalar_t XACT_number; /* maximum outstanding transaction reqs. */

t_uscalar_t BIND_flags; /* bind flags */

} TR_bind_req_t;

/*

* TR_BIND_ACK. This primitive consists of one M_PROTO message block.

*/

typedef struct TR_bind_ack {

t_uscalar_t PRIM_type; /* Always TR_BIND_ACK */

t_uscalar_t ADDR_length; /* address length */

t_uscalar_t ADDR_offset; /* address offset */

t_uscalar_t XACT_number; /* open transactions */

t_uscalar_t TOKEN_value; /* value of "token" assigned to stream */

} TR_bind_ack_t;

/*

* TR_ADDR_REQ. This primitive consists of one M_PROTO message block.

*/

typedef struct TR_addr_req {

t_uscalar_t PRIM_type; /* Always TR_ADDR_REQ */

t_uscalar_t TRANS_id; /* Transaction id */

2008-10-31 105

Appendix D: TRI Header File Listing

} TR_addr_req_t;

/*

* TR_ADDR_ACK. This primitive consists of one M_PCPROTO message block.

*/

typedef struct TR_addr_ack {

t_uscalar_t PRIM_type; /* Always TR_ADDR_ACK */

t_uscalar_t LOCADDR_length; /* local address length */

t_uscalar_t LOCADDR_offset; /* local address offset */

t_uscalar_t REMADDR_length; /* remote address length */

t_uscalar_t REMADDR_offset; /* remote address offset */

} TR_addr_ack_t;

/*

* TR_UNBIND_REQ. This primtive consists of one M_PROTO message block.

*/

typedef struct TR_unbind_req {

t_uscalar_t PRIM_type; /* Always TR_UNBIND_REQ */

} TR_unbind_req_t;

/*

* TR_OPTMGMT_REQ. This primtive consists of one M_PROTO message block.

*/

typedef struct TR_optmgmt_req {

t_uscalar_t PRIM_type; /* Always T_OPTMGMT_REQ */

t_uscalar_t OPT_length; /* options length */

t_uscalar_t OPT_offset; /* options offset */

t_uscalar_t MGMT_flags; /* options data flags */

} TR_optmgmt_req_t;

/*

* TR_OPTMGMT_ACK. This primitive consists of one M_PCPROTO message block.

*/

typedef struct TR_optmgmt_ack {

t_uscalar_t PRIM_type; /* Always T_OPTMGMT_ACK */

t_uscalar_t OPT_length; /* options length */

t_uscalar_t OPT_offset; /* options offset */

t_uscalar_t MGMT_flags; /* options data flags */

} TR_optmgmt_ack_t;

/*

* TR_OK_ACK. This primitive consists of one M_PCPROTO message block.

*/

typedef struct TR_ok_ack {

t_uscalar_t PRIM_type; /* Always T_OK_ACK */

t_uscalar_t CORRECT_prim; /* correct primitive */

} TR_ok_ack_t;

/*

* TR_ERROR_ACK. This primitive consists of one M_PCPROTO message block.

*/

typedef struct TR_error_ack {

t_uscalar_t PRIM_type; /* Always T_ERROR_ACK */

t_uscalar_t ERROR_prim; /* primitive in error */

t_uscalar_t TRPI_error; /* TRPI error code */

t_uscalar_t UNIX_error; /* UNIX error code */

106 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Header File Listing

t_uscalar_t TRANS_id; /* Transaction id */

} TR_error_ack_t;

/*

* TR_UNI_REQ. This primitive consists of one M_PROTO message block followed

* by one or more M_DATA blocks.

*/

typedef struct TR_uni_req {

t_uscalar_t PRIM_type; /* Always TR_UNI_REQ */

t_uscalar_t DEST_length; /* Destination address length */

t_uscalar_t DEST_offset; /* Destination address offset */

t_uscalar_t ORIG_length; /* Originating address length */

t_uscalar_t ORIG_offset; /* Originating address offset */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_uni_req_t;

/*

* TR_UNI_IND. This primitive consists of one M_PROTO message block followed

* by one or more M_DATA blocks.

*/

typedef struct TR_uni_ind {

t_uscalar_t PRIM_type; /* Always TR_UNI_REQ */

t_uscalar_t DEST_length; /* Destination address length */

t_uscalar_t DEST_offset; /* Destination address offset */

t_uscalar_t ORIG_length; /* Originating address length */

t_uscalar_t ORIG_offset; /* Originating address offset */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_uni_ind_t;

/*

* TR_BEGIN_REQ.

*/

typedef struct TR_begin_req {

t_uscalar_t PRIM_type; /* Always TR_BEGIN_REQ */

t_uscalar_t CORR_id; /* Correlation id */

t_uscalar_t ASSOC_flags; /* Association flags */

t_uscalar_t DEST_length; /* Destination address length */

t_uscalar_t DEST_offset; /* Destination address offset */

t_uscalar_t ORIG_length; /* Originating address length */

t_uscalar_t ORIG_offset; /* Originating address offset */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_begin_req_t;

/*

* TR_BEGIN_IND.

*/

typedef struct TR_begin_ind {

t_uscalar_t PRIM_type; /* Always TR_BEGIN_IND */

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t ASSOC_flags; /* Association flags */

t_uscalar_t DEST_length; /* Destination address length */

t_uscalar_t DEST_offset; /* Destination address offset */

t_uscalar_t ORIG_length; /* Originating address length */

2008-10-31 107

Appendix D: TRI Header File Listing

t_uscalar_t ORIG_offset; /* Originating address offset */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_begin_ind_t;

/*

* TR_BEGIN_RES.

*

* This primitive represents the first TR-CONTINUE response to a TR-BEGIN

* indication.

*/

typedef struct TR_begin_res {

t_uscalar_t PRIM_type; /* Always TR_BEGIN_RES */

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t ASSOC_flags; /* Association flags */

t_uscalar_t ORIG_length; /* Originating address length */

t_uscalar_t ORIG_offset; /* Originating address offset */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_begin_res_t;

/*

* TR_BEGIN_CON.

*

* This primitive represents the first TR-CONTINUE configuration of a

* TR-BEGIN request.

*/

typedef struct TR_begin_con {

t_uscalar_t PRIM_type; /* Always TR_BEGIN_CON */

t_uscalar_t CORR_id; /* Correlation Id */

t_uscalar_t ASSOC_flags; /* Association flags */

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t ORIG_length; /* Originating address length */

t_uscalar_t ORIG_offset; /* Originating address offset */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_begin_con_t;

/*

* TR_CONT_REQ.

*/

typedef struct TR_cont_req {

t_uscalar_t PRIM_type; /* Always TR_CONT_REQ */

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t ASSOC_flags; /* Association flags */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_cont_req_t;

/*

* TR_CONT_IND.

*/

typedef struct TR_cont_ind {

t_uscalar_t PRIM_type; /* Always TR_CONT_IND */

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t ASSOC_flags; /* Association flags */

108 Version 0.9a Rel. 8

Transaction Interface (TRI) TRI Header File Listing

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_cont_ind_t;

/*

* TR_END_REQ.

*/

typedef struct TR_end_req {

t_uscalar_t PRIM_type; /* Always TR_END_REQ */

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t TERM_scenario; /* Termination scenario */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_end_req_t;

/*

* TR_END_IND.

*/

typedef struct TR_end_ind {

t_uscalar_t PRIM_type; /* Always TR_END_IND */

t_uscalar_t CORR_id; /* Correlation id */

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_end_ind_t;

/*

* TR_ABORT_REQ.

*/

typedef struct TR_abort_req {

t_uscalar_t PRIM_type; /* Always TR_ABORT_REQ */

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t ABORT_cause; /* Cause of the abort */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

} TR_abort_req_t;

/*

* TR_ABORT_IND.

*/

typedef struct TR_abort_ind {

t_uscalar_t PRIM_type; /* Always TR_ABORT_IND */

t_uscalar_t CORR_id; /* Correlation id */

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t OPT_length; /* Options structure length */

t_uscalar_t OPT_offset; /* Options structure offset */

t_uscalar_t ABORT_cause; /* Cause of the abort */

t_uscalar_t ORIGINATOR; /* Originator P or U */

} TR_abort_ind_t;

/*

* TR_NOTICE_IND.

*/

typedef struct TR_notice_ind {

t_uscalar_t PRIM_type; /* Always TR_NOTICE_IND */

t_uscalar_t CORR_id; /* Correlation id */

2008-10-31 109

Appendix D: TRI Header File Listing

t_uscalar_t TRANS_id; /* Transaction id */

t_uscalar_t REPORT_cause; /* SCCP return cause */

} TR_notice_ind_t;

110 Version 0.9a Rel. 8

Transaction Interface (TRI) License

License

GNU Free Documentation License

GNU FREE DOCUMENTATION LICENSE
Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document free
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

Terms and Conditions for Copying, Distribution and Modification

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a

2008-10-31 111

License texi/fdl.texi

textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

112 Version 0.9a Rel. 8

Transaction Interface (TRI) License

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

2008-10-31 113

License texi/fdl.texi

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be

114 Version 0.9a Rel. 8

Transaction Interface (TRI) License

added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

2008-10-31 115

License texi/fdl.texi

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

END OF TERMS AND CONDITIONS

116 Version 0.9a Rel. 8

http://www.gnu.org/copyleft/

Transaction Interface (TRI) License

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead
of “Front-Cover Texts being list”; likewise for Back-Cover Texts.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

2008-10-31 117

Transaction Interface (TRI) Glossary

Glossary

Signalling Data Link Service Data Unit
A grouping of SDL user data whose boundaries are preserved from one end of
the signalling data link connection to the other.

Data transfer
The phase in connection and connectionless modes that supports the transfer
of data between to signalling data link users.

SDL provider
The signalling data link layer protocol that provides the services of the signalling
data link interface.

SDL user
The user-level application or user-level or kernel-level protocol that accesses the
services of the signalling data link layer.

Local management
The phase in connection and connectionless modes in which a SDL user initial-
izes a Stream and attaches a PPA address to the Stream. Primitives in this
phase generate local operations only.

PPA
The point at which a system attaches itself to a physical communications
medium.

PPA identifier
An identifier of a particular physical medium over which communication tran-
spires.

2008-10-31 119

Transaction Interface (TRI) Acronyms

Acronyms

ITU-T International Telecommunications Union - Telecom Sector
PPA Physical Point of Attachment
SDLI Signalling Data Link Interface
SDL SDU Signalling Data Link Service Data Unit
SDL Signalling Data Link

2008-10-31 121

Transaction Interface (TRI) References

References

1. ITU-T Recommendation X.210, (Geneva, 1993), “Information Technology — Open
Systems Interconnection — Basic reference model: Conventions for the definition of
OSI services,” ISO/IEC 10731:1994.

2. ITU-T Recommendation X.217, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Service definition for the Association Control Service Ele-
ment,” ISO/IEC 8649:1996.

3. ITU-T Recommendation X.227, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connection-oriented protocol for the Association Control
Service Element: Protocol Specification,” ISO/IEC 8650-1.

4. ITU-T Recommendation X.237, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connectionless protocol for the Association Control Service
Element: Protocol Specification,” ISO/IEC 10035-1 : 1995.

5. ITU-T Recommendation X.216, (Geneva, 1994), “Information Technology — Open
Systems Interconnection — Presentation service definition,” ISO/IEC 8822:1994.

6. ITU-T Recommendation X.226, (Geneva, 1994), “Information Technology — Open
Systems Interconnection — Connection-oriented presentation protocol: Protocol spec-
ification,” ISO/IEC 8823-1:1994.

7. ITU-T Recommendation X.236, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connectionless presentation protocol: Protocol specifica-
tion,” ISO/IEC 9576-1:1995.

8. ITU-T Recommendation X.215, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Session service definition,” ISO/IEC 8326:1996.

9. ITU-T Recommendation X.225, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connection-oriented session protocol: Protocol specifica-
tion,” ISO/IEC 8327-1:1996.

10. ITU-T Recommendation X.235, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connectionless session protocol: Protocol specification,”
ISO/IEC 9548-1:1995.

11. ITU-T Recommendation X.214, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Transport service definition,” ISO/IEC 8072:1996.

12. ITU-T Recommendation X.224
13. ITU-T Recommendation Q.700
14. ITU-T Recommendation Q.701
15. ITU-T Recommendation Q.702
16. ITU-T Recommendation Q.703
17. ITU-T Recommendation Q.704
18. Geoffrey Gerrien, “CDI - Application Program Interface Guide,” Gcom, Inc., March

1999.
19. ITU-T Recommendation Q.771, (Geneva, 1993), “Signalling System No. 7 — Func-

tional description of transaction capabilities,” (White Book).

2008-10-31 123

Transaction Interface (TRI) Index

Index

A
ABORT_cause . 64, 66
ADDR_length . 26, 29, 30
ADDR_offset . 26, 29
ADDR_size . 25, 82, 88
AIDU_size . 25
ASDU_size . 24, 25, 81, 87
ASSOC_flags 45, 48, 50, 53, 56, 58

B
BIND_flags . 27

C
CDATA_size . 24, 25, 81, 87
CORR_id . 45, 53, 62, 66, 72
CORRECT_prim . 41
CURRENT_state . 25, 82, 88

D
DDATA_size . 24, 25, 81, 87
DEST_length 46, 47, 48, 49, 68, 70
DEST_offset 46, 47, 48, 49, 68, 70

E
EASDU_size . 24, 25, 81, 87
EPROTO . 57, 69, 73
ERROR_prim . 42

G
getmsg(2s) . 7

L
license, FDL . 111
license, GNU Free Documentation License 111
LOCADDR_length . 34, 35
LOCADDR_offset . 34, 35

M
M_DATA . . 7, 8, 45, 48, 50, 53, 55, 57, 58, 60, 62, 68,

70, 72, 82, 88
M_ERROR . 57, 69, 73, 75
M_FLUSH . 76, 77
M_PCPROTO 8, 22, 24, 29, 34, 36, 38, 41, 42, 72

M_PROTO . . . 7, 26, 31, 32, 36, 45, 46, 48, 49, 50, 53,
54, 55, 56, 57, 58, 60, 62, 64, 66, 68, 69, 70, 71

MGMT_flags . 36, 38, 39, 40
MORE_DATA_FLAG . 56

N
N_QOS_OPT_RETERR . 80, 86
N_QOS_OPT_SEL_SCCP . 80, 86
N_QOS_PCLASS_0 . 80, 86
N_QOS_PCLASS_1 . 80, 86
N_QOS_PCLASS_2 . 80, 86
N_QOS_PCLASS_3 . 80, 86
N_QOS_RANGE_SCCP . 80, 86
N_QOS_SEL_SCCP . 80, 86

O
OPT_length . . 36, 38, 39, 46, 49, 50, 53, 56, 58, 60,

62, 64, 66, 69, 70
OPT_offset . . 36, 38, 46, 49, 50, 54, 56, 58, 60, 62,

64, 66, 69, 71
OPT_size . 25, 82, 88
ORIG_length 46, 47, 48, 49, 50, 53, 54, 68, 70
ORIG_offiset . 54
ORIG_offset . . 46, 47, 48, 49, 50, 53, 54, 68, 69, 70
ORIGINATOR . 67

P
PRIM_type . . . 22, 24, 26, 29, 31, 32, 34, 36, 38, 41,

42, 45, 48, 50, 53, 56, 58, 60, 62, 64, 66, 68, 70,
72

PROVIDER_flag . 25, 82, 88
putmsg(2s) . 7

Q
QOS_UNKNOWN . 80, 86

R
REMADDR_length . 34, 35
REMADDR_offset . 34, 35
REPORT_cause . 72

S
SCCP_MAX_ADDR_LENGTH . 82, 88
SERV_type . 25, 82, 88
STREAMS . 3, 5

2008-10-31 125

Index

T
T_ACSE_PCLASS . 82, 88
T_CURRENT . 39
T_DEFAULT . 38, 39
T_INFINITE . 81, 87
T_MORE . 55
T_NEGOTIATE . 39
T_SCCP_QOS . 79, 86
T_SS7_SCCP . 79, 86
T_TCAP_OCLASS . 82, 88
T_UNKNOWN . 81, 87
TERM_scenario . 60
TIDU_size . 55, 57, 82, 88
TOKEN_value . 29
TR_ABORT_IND 16, 17, 18, 47, 57, 66, 77, 83, 89,

92
TR_abort_ind_t . 66
TR_ABORT_REQ 14, 16, 17, 18, 63, 64, 76, 77, 83,

89, 92
TR_abort_req_t . 64
TR_ADDR_ACK 32, 33, 34, 83, 89, 91
TR_addr_ack_t . 34
TR_ADDR_REQ . 32, 35, 82, 89, 91
TR_addr_req_t . 32
TR_BEGIN_CON 15, 47, 53, 56, 58, 60, 62, 63, 64,

66, 81, 83, 87, 89, 92
TR_begin_con_t . 53
TR_BEGIN_IND 14, 15, 48, 56, 58, 60, 62, 64, 66,

75, 81, 83, 87, 89, 92
TR_begin_ind_t . 48
TR_BEGIN_REQ 14, 15, 45, 53, 57, 63, 75, 81, 83,

87, 89, 92
TR_begin_req_t . 45
TR_BEGIN_RES 14, 15, 50, 63, 75, 81, 83, 87, 89,

92
TR_begin_res_t . 50
TR_BIND_ACK 12, 27, 29, 83, 89, 91
TR_bind_ack_t . 29
TR_BIND_REQ 11, 12, 26, 30, 83, 89, 91
TR_bind_req_t . 26
TR_CHECK . 36, 39
TR_CLTRS . 25
TR_CONT_IND 16, 57, 58, 59, 83, 89, 92
TR_cont_ind_t . 58
TR_CONT_REQ 16, 55, 56, 57, 58, 59, 81, 83, 87,

89, 92
TR_cont_req_t . 55
TR_CURRENT . 36, 40
TR_DEFAULT . 36, 39
TR_END_IND . . . 16, 17, 47, 62, 81, 83, 87, 88, 89, 92
TR_end_ind_t . 62
TR_END_REQ . . 14, 16, 49, 54, 59, 60, 63, 81, 83, 87,

88, 89, 92
TR_end_req_t . 60
TR_ERROR_ACK 13, 23, 27, 30, 31, 33, 37, 40, 42,

47, 51, 61, 65, 73

TR_error_ack_t . 42
TR_FAILURE . 39
TR_INFO_ACK 11, 22, 23, 24, 55, 57, 81, 87, 91
TR_info_ack_t . 24
TR_INFO_REQ 11, 22, 24, 25, 80, 81, 87, 91
TR_info_req_t . 22
TR_MORE_DATA_FLAG 56, 57, 58, 59
TR_NEGOTIATE . 36, 39
TR_NO_PERMISSION 46, 49, 51, 54, 57, 58, 59
TR_NOTICE_IND 19, 69, 72, 84, 90, 92
TR_notice_ind_t . 72
TR_NOTSUPPORT . 38
TR_OK_ACK 12, 31, 41, 51, 61, 65, 76, 77
TR_ok_ack_t . 41
TR_OPGMGMT_REQ . 39
TR_OPMGMT_ACK . 40
TR_OPTMGMT_ACK 37, 38, 39, 40, 83, 89, 91
TR_optmgmt_ack_t . 38
TR_OPTMGMT_REQ 12, 36, 38, 39, 40, 55, 56, 83,

89, 91
TR_optmgmt_req_t . 36
TR_PABORT_IND . 63
TR_PARTSUCCESS . 39
TR_PROVIDER . 67
TR_RC_FLAG . 56, 57, 58, 59
TR_READONLY . 38
TR_SEQ_ASSURANCE . 46, 51, 57
TR_SUCCESS . 39
TR_UABORT_IND . 63
TR_UNBIND_REQ . 12, 31, 76
TR_unbind_req_t . 31
TR_UNI_IND . 19, 70, 83, 90, 92
TR_uni_ind_t . 70
TR_UNI_REQ . 19, 68, 83, 90, 92
TR_uni_req_t . 68
TR_UNSPECIFIED . 67
TR_USER . 67
TRACCES . 28, 37, 43, 47, 51
TRADDRBUSY . 28, 43
TRANS_id 30, 32, 42, 48, 50, 53, 56, 58, 60, 62,

63, 64, 66, 72
TRBAADDR . 27
TRBADADDR . 43, 47, 52
TRBADDATA . 43, 47, 51, 65
TRBADF . 43, 51
TRBADFLAG . 37, 43
TRBADID . 33, 65
TRBADOPT . 37, 43, 47, 51
TRBADSEQ . 43, 52
TRI_error . 42
TRI_version . 25, 82, 88
TRNOADDR . 28, 43, 47
TRNOTSUPPORT . 33, 37, 44, 65
TROUTSTATE 28, 31, 37, 43, 47, 51, 61, 65
TRRESADDR . 43, 52

126 Version 0.9a Rel. 8

Transaction Interface (TRI) Index

TRS_DATA_XFER . . 47, 51, 54, 56, 57, 59, 60, 61, 62,
77

TRS_IDLE 30, 31, 46, 47, 49, 57, 61, 63, 65, 67,
69, 71

TRS_UNBND . 27, 30, 35
TRS_UNINIT . 35
TRS_WACK_BREQ . 27, 30
TRS_WACK_CREQ . 46, 75
TRS_WACK_ORDREL . 77
TRS_WACK_UREQ . 31
TRS_WCON_CREQ . 54, 62
TRS_WIND_ORDREL . 77

TRS_WRES_CIND . 49, 51, 75
TRSYSERR 28, 31, 33, 37, 42, 43, 47, 52, 61, 65
TSDU_size . 57

U
UNIX_error . 42

X
XACT_number . 27, 29, 30

2008-10-31 127

	Preface
	Security Warning
	Abstract
	Purpose
	Intent
	Audience
	Disclaimer
	Revision History

	Introduction
	Related Documentation
	Role

	Definitions, Acronyms, and Abbreviations

	The Transaction Sub-Layer
	Model of the TRI
	TRI Services
	COTS
	CLTS
	Local Management

	TRI Services Definition
	Local Management Services Definition
	Transaction Information Reporting Service
	TR User Bind Service
	TR User Unbind Service
	Receipt Acknowledgement Service
	Options Mangement Service
	Error Acknowledgement Service

	Connection-Oriented Mode Services Definition
	Transaction Initiation Phase
	User Primitives Successful Transaction Establishment
	Provider Primitives Successful Transaction Establishment

	Transaction Data Transfer Phase
	Primitives for Data Transfer

	Transaction Termination Phase
	Primitives for Transaction Termination

	Connectionless Mode Services Definition
	Request and Response Primitives

	TRI Primitives
	Management Primitives
	Transaction Information
	Transaction Information Request
	Transaction Information Acknowledgement

	Transaction Protocol Address Management
	Transaction Bind Request
	Transaction Bind Acknowledgement
	Transaction Unbind Request
	Transaction Protocol Address Request
	Transaction Protocol Address Acknowledgement

	Transaction Options Management
	Transaction Options Management Request
	Transaction Options Management Acknowledgement

	Transaction Error Management
	Transaction Successful Receipt Acknowledgement
	Transaction Error Acknowledgement

	Connection-Oriented Mode Primitives
	Transaction Establishment
	Transaction Begin Request
	Transaction Begin Indication
	Transaction Begin Response
	Transaction Begin Confirmation

	Transaction Data Transfer
	Transaction Continue Request
	Transaction Continue Indication

	Transaction Termination
	Transaction End Request
	Transaction End Indication
	Transaction User Abort Request
	Transaction Abort Indication

	Connectionless Mode Primitives
	Transaction Phase
	Transaction Unidirectional Request
	Transaction Unidirectional Indication
	Transaction Notice Indication

	Diagnostics Requirements
	Non-Fatal Errors
	Fatal Errors

	Transaction Service Interface Sequence of Primitives
	Rules for State Maintenance
	General Rules for State Maintenace
	Connection-Oriented Transaction Service Rules for State Maintenace

	Rules for Precedence of Primitives on a Stream
	General Rules for Precedence of Primitives
	Connection-Oriented Transaction Service Rules for Precedence of Primitives

	Rules for Flushing Queues
	General Rules for Flushing Queues
	Connection-Oriented Transaction Service Rules for Flushing Queues

	Addendum for ITU-T Conformance
	Quality of Service: Model and Description
	QoS Overview

	TRI Primitives: Rules for ITU-T Q.771 Conformance
	Addressing
	Address Format

	Options
	TCAP Level Options
	SCCP Level Options

	Supported Services
	Common Transaction Services
	Information Service
	Address service
	Bind Service
	Options Management Service

	Connection-Oriented Transaction Services
	Transaction Begin
	Transaction Continue
	Transaction End

	Connectionless Transaction Services

	Addendum for ANSI Conformance
	Quality of Service: Model and Description
	QoS Overview

	TRI Primitives: Rules for ANSI T1.114 Conformance
	Addressing
	Address Format

	Options
	TCAP Level Options
	SCCP Level Options

	Supported Services
	Common Transaction Services
	Information Service
	Address service
	Bind Service
	Options Management Service

	Connection-Oriented Transaction Services
	Transaction Begin
	Transaction Continue
	Transaction End

	Connectionless Transaction Services

	Addendum for ETSI Conformance
	ETSI Quality of Service Model and Description
	QoS Overview

	TRI Primitives: Rules for ETSI ETS 300 287 Conformance
	Addressing
	Address Format

	Options
	TCAP Level Options
	SCCP Level Options

	ETSI Supported Services
	Common Transaction Services
	Information service
	Address service
	Bind Service
	Options Management Service

	Connection-Oriented Transaction Services
	Transaction Begin
	Transaction Continue
	Transaction End

	Connectionless Transaction Services

	Mapping TRI Primitives
	Mapping TRI Primitives to ITU-T Q.771
	Mapping TRI Primitives to ANSI T1.114
	Mapping TRI Primitives to ITU-T X.219
	State Mapping
	Primitive Mapping
	A-ASSOCIATE
	A-RELEASE
	A-ABORT
	A-P-ABORT
	A-UNIT-DATA

	Parameter Mapping

	State/Event Tables
	Primitive Precedence Tables
	TRI Header File Listing
	License
	GNU Free Documentation License
	Preamble
	Terms and Conditions for Copying, Distribution and Modification
	How to use this License for your documents

	Glossary
	Acronyms
	References
	Index

